Skip to main content

Advertisement

Log in

Intermolecular Interactions in Dihydrothymine Derivatives Form Two-Dimensional and Three-Dimensional Networks

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

In this paper, inter- or intra-molecular induced oxazolidine ring opening of two bicyclic nucleosides during recrystallisation are presented. The structures of these two compounds, azide derivative 2 and –NHBz derivative 3, as well as bicyclic O-trityl derivative 1, have been determined by single crystal X-ray diffraction method. The aim of this work was to understand the influence of structural differences of dihydrothymines on their supramolecular assemblies. In the crystal structure of 1, which crystallized with one ethanol molecule in the asymmetric unit, O–H···N and C–H···O intermolecular hydrogen bonds form two-dimensional network. One C–H···π interaction extends two-dimensional network into three-dimensional. Supramolecular structure of 2 is a three-dimensional network formed by N–H···O, O–H···O, C–H···N and C–H···O hydrogen bonds. Compound 3 crystallized with two independent molecules and two water molecules in the asymmetric unit and displays the greatest number of intermolecular interactions. Interestingly, although N–H···O, O–H···N, O–H···O and C–H···O hydrogen bonds are formed, as well as two C–H···π interactions, the result is only a two-dimensional network.

Graphical Abstract

In this paper crystal structures of three dihydrothymine derivatives which built different supramolecular architectures are presented and it is shown how weak interaction, such as C−H···π interaction, can form higher-order supramolecular structure, from two-dimensional to three-dimensional network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Chart 1

Similar content being viewed by others

References

  1. Prusoff WH (1959) Biochim Biophys Acta 32:295–296

    Article  CAS  Google Scholar 

  2. De Clercq E, Field HJ (2006) Br J Pharmacol 147:1–11

    Article  Google Scholar 

  3. De Clercq E, Holý A (2005) Nat Rev Drug Discov 4:928–940

    Article  Google Scholar 

  4. MacCoss M, Robins MJ (1990) In: Wilman DEV (ed) Chemistry of Antitumor Agents. Glasgow, Blackie and Son, p 261

    Chapter  Google Scholar 

  5. Robins RK, Revankar GR (1988) In: De Clercq E, Walker RT (eds) Antiviral Drug Development. Plenum Press, Ney York, p 11

    Chapter  Google Scholar 

  6. Chu CK (2002) Recent Advances in Nucleosides: Chemistry and Chemotherapy. Elsevier Science B.V, Amsterdam

    Google Scholar 

  7. Schinazi RF, Liotta DC (2004) Frontiers in Nucleosides and Nucleic Acids. IHL Press, Tucker

    Google Scholar 

  8. Perez-Perez AM-J, Hernandez A-I, Priego E-M, Rodriguez-Barrios F, Gago F, Camarasa M-J, Balzarini J (2005) Curr Top Med Chem 5:1205–1219

    Article  CAS  Google Scholar 

  9. Duschinsky R, Gabriel T, Tautz W, Nussbaum AW, Hoffer M, Grunberg E (1967) J Med Chem 10:47–58

    Article  CAS  Google Scholar 

  10. Bernardinelli G, Benhamza R, Tronchet JMJ (1989) Acta Crystallogr C 45:1917–1921

    Article  Google Scholar 

  11. Jan S-T, Shih M-J, Venkatachalam TK, D’Cruz OJ, Chen C-L, Uckun FM (1999) Antivir Chem Chemother 10:39–46

    CAS  Google Scholar 

  12. Chang C, Roth B (1970) Some pyrimidines of biological and medicinal interest, II, progress in medical chemistry, vol 7. Butterworths, London, p 311

    Google Scholar 

  13. Krwawicz J, Arczewska KD, Speina E, Maciejewska A, Grzesiuk E (2007) Acta Bioch Pol 54:413–434

    CAS  Google Scholar 

  14. Brown KL, Adams T, Jasti VP, Basu AK, Stone MP (2008) J Am Chem Soc 130:11701–11710

    Article  CAS  Google Scholar 

  15. Gourdain S, Martinez A, Petermann C, Harakat D, Clivio P (2009) J Org Chem 74:6885–6887

    Article  CAS  Google Scholar 

  16. Clar VM, Todd AR, Zussman J (1951) J Chem Soc 2952–2958

  17. Capon RJ, Trotter NS (2005) J Nat Prod 68:1689–1691

    Article  CAS  Google Scholar 

  18. Ueda T (1988) In: Townsend LB (ed) Chemistry of Nucleosides and Nucleotides, vol 1. Plenum Press, New York, pp 49–73

    Google Scholar 

  19. Niaz GR, Khan F (1997) Pakistan J Pharm Sci 10:9–17

    CAS  Google Scholar 

  20. Jokić M, Raza Z, Katalenić D (2000) Nucleos Nucleot Nucl Acid 19:1381–1396

    Article  Google Scholar 

  21. Nura-Lama A, Makarević J, Žinić B (2005) Kërkime ASHAK 13:57–64

    Google Scholar 

  22. Nura-Lama A, Bicaj M (2002) Acta Chem Kosovica 11:67–74

    Google Scholar 

  23. Diffraction Oxford (2007) Xcalibur CCD system. CRYSALISPRO; Oxford Diffraction Ltd, Abingdon, England

    Google Scholar 

  24. Harms K, Wocadlo S (1995) XCAD-4: program for processing CAD4 diffractometer data. University of Marburg, Germany

    Google Scholar 

  25. Sheldrick GM (2008) Acta Crystallogr A 64:112–122

    Article  CAS  Google Scholar 

  26. Farrugia LJ (2012) J Appl Crystallogr 45:849–854

    Article  CAS  Google Scholar 

  27. Spek AL (2009) Acta Crystallogr D 65:148–155

    Article  CAS  Google Scholar 

  28. Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van de Streek J (2006) J Appl Crystallogr 39:453–457

    Article  CAS  Google Scholar 

  29. Furberg S, Jensen LH (1968) J Am Chem Soc 90:470–474

    Article  CAS  Google Scholar 

  30. Konnert J, Karle IL, Karle J (1970) Acta Crystallogr B 26:770–778

    Article  CAS  Google Scholar 

  31. Cetina M, Makarević J, Nura-Lama A (2010) J Mol Struct 980:156–162

    Article  CAS  Google Scholar 

  32. Bernstein J, Davis RE, Shimoni L, Chang N-L (1995) Angew Chem Int Ed Engl 34:1555–1573

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support for this study was provided by the Ministry of Science, Education and Sport of the Republic of Croatia (Project Nos. 119-1193079-3069, 098-1191344-2943 and 098-0982904-2912).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Cetina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cetina, M., Štefanić, Z., Makarević, J. et al. Intermolecular Interactions in Dihydrothymine Derivatives Form Two-Dimensional and Three-Dimensional Networks. J Chem Crystallogr 45, 67–76 (2015). https://doi.org/10.1007/s10870-015-0567-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-015-0567-1

Keywords

Navigation