Skip to main content
Log in

Pyridine-2,6-Dicarboxylic Acid (Dipic): Crystal Structure from Co-Crystal to a Mixed Ligand Nickel(II) Complex

  • ORIGINAL PAPER
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Pyridine-2,6-dicarboxylic acid (dipic) was used for the synthesis of a co-crystal with 1,10-phenanthroline-5,6-dione (phen-dione) and a nickel(II) complex. The co-crystal dipic·phen-dione·4H2O (1) has been synthesized and studied by X-ray crystallography. The structure is stabilized with hydrogen bonds between dipic, H2O and phen-dione. It is surprising that there is no direct hydrogen bonding between phen-dione and dipic and yet the molecules co-crystallize in aqueous solution. A new complex of nickel(II), [Ni(phen)(dipic)(H2O)]·4H2O (2), (where phen = 1,10-phenanthroline) has been synthesized and characterized by elemental and thermogravimetric analyses, FT-IR, UV–Vis and 1H-NMR spectroscopy. The structure of (2) has been studied by X-ray crystallography. The coordination around Ni(II) is a distorted octahedron. The crystal packing shows that the dimensionality of (2) is enlarged to 3D, through hydrogen bonds and π–π interactions. Cyclic voltammetry of (2) shows that the Ni(II/I) couple is irreversible.

Graphical Abstract

Pyridine-2,6-dicarboxylic acid (dipic) was used for the synthesis of a co-crystal with 1,10-phenanthroline-5,6-dione (phen-dione) and a mononuclear nickel(II) complex. The co-crystal, dipic·phen-dione·4H2O, and the mononuclear nickel(II) complex, [Ni(phen)(dipic)(H2O)]·4H2O (where phen = 1,10-phenanthroline) have been prepared and characterized by spectroscopic methods and X-ray crystallography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Desiraju GR (2003) J Mol Struct 656:5

    Article  CAS  Google Scholar 

  2. Desiraju GR (1996) J Mol Struct 374:191

    Article  CAS  Google Scholar 

  3. Desiraju GR (1997) Curr Opin Solid State Mater Sci 2:451

    Article  CAS  Google Scholar 

  4. Desiraju GR (2003) Crystal design: structure and function. Wiley, Chichester

    Book  Google Scholar 

  5. Ranjbar ZR, Morsali A, Zhu LG (2007) J Mol Struct 829:29

    Article  Google Scholar 

  6. Nehm SJ, Rodriguez-Spong B, Rodriguez-Hornedo N (2006) Cryst Growth Des 6:592

    Article  CAS  Google Scholar 

  7. Velaga SP, Basavoju S, Boström D (2008) J Mol Struct 889:150

    Article  CAS  Google Scholar 

  8. Huczyński A, Ratajczak-Sitarz M, Katrusiak A, Brzezinski B (2008) J Mol Struct 888:84

    Article  Google Scholar 

  9. Cheney ML, McManus GJ, Perman JA, Wang Z, Zaworotko MJ (2007) Cryst Growth Des 7:616

    Article  CAS  Google Scholar 

  10. Porter WW III, Elie SC, Matzger AJ (2008) Cryst Growth Des 8:14

    Article  CAS  Google Scholar 

  11. Dunitz JD (2003) Cryst Eng Commun 5:506

    CAS  Google Scholar 

  12. Etter MC (1982) J Am Chem Soc 104:1095

    Article  CAS  Google Scholar 

  13. Etter MC (1990) Acc Chem Res 23:120

    Article  CAS  Google Scholar 

  14. Hadadzadeh H, Rezvani AR, Esfandiari H (2008) Polyhedron 27:1809

    Article  CAS  Google Scholar 

  15. Hadadzadeh H, Fatemi SJA, Hosseinian SR, Khavasi HR, Pöttgen R (2008) Polyhedron 27:249

    Article  CAS  Google Scholar 

  16. Hadadzadeh H, Olmstead MM, Rezvani AR, Safari N, Saravani H (2006) Inorg Chim Acta 359:2154

    Article  CAS  Google Scholar 

  17. Saravani H, Rezvani AR, Mansouri G, Salehi Rad AR, Khavasi HR, Hadadzadeh H (2007) Inorg Chim Acta 360:2829

    Article  CAS  Google Scholar 

  18. Keim W (1990) Angew Chem Int Ed Engl 29:235

    Article  Google Scholar 

  19. Cristurean A, Irisli S, Marginean D, Rat C, Silvestru A (2008) Polyhedron 27:2143

    Article  CAS  Google Scholar 

  20. Kumar PR, Upreti S, Singh AK (2008) Polyhedron 27:1610

    Article  CAS  Google Scholar 

  21. Ilhan S, Temel H, Yilmaz I, Şekerci M (2007) Polyhedron 26:2795

    Article  CAS  Google Scholar 

  22. Park H, Lough AJ, Kim JC, Jeong MH, Kang YS (2007) Inorg Chim Acta 360:2819

    Article  CAS  Google Scholar 

  23. Kirillova MV, Kirillov AM, Guedes da Silva MFC, Kopylovich MN, Fraústo da Silva JJR, Pombeiro AJL (2008) Inorg Chim Acta 361:1728

    Article  CAS  Google Scholar 

  24. Prasad TK, Rajasekharan MV (2007) Polyhedron 26:1364

    Article  CAS  Google Scholar 

  25. Payne VCR, Headley OSC, Stibrany RT, Maragh PT, Dasgupta TP, Newton AM, Holder AA (2007) J Chem Cryst 37:309

    Article  CAS  Google Scholar 

  26. Wang X, Qin C, Wang E, Hu C, Xu L (2004) J Mol Struct 692:187

    Article  CAS  Google Scholar 

  27. Kirillova MV, Guedes da Silva MFC, Kirillov AM, Fraústo da Silva JJR, Pombeiro AJL (2007) Inorg Chim Acta 360:506

    Article  CAS  Google Scholar 

  28. Ramezanipour F, Aghabozorg H, Shokrollahi A, Shamsipur M, Stoeckli-Evans H, Soleimannejad J, Sheshmani S (2005) J Mol Struct 779:77

    Article  CAS  Google Scholar 

  29. Setlow B, Setlow P (1993) Appl Environ Microbiol 59:640

    CAS  Google Scholar 

  30. Yamada M, Tanaka Y, Yoshimoto Y, Kuroda Y, Shimao S (1992) Bull Chem Soc Jpn 65:1006

    Article  CAS  Google Scholar 

  31. Gennett T, Milner DF, Weaver MJ (1985) J Phys Chem 89:2787

    Article  CAS  Google Scholar 

  32. Scheldrick GM (1998) SHELXS V. 5.1, Structure determination software suite, Bruker AXS. Madison, Wisconsin, USA

    Google Scholar 

  33. Carmona P (1980) Spectrochim Acta A 36:705

    Article  Google Scholar 

  34. Drago RS (1992) Physical methods for chemists, 2nd edn. Saunders, Philadelphia

    Google Scholar 

  35. Robinson SD, Uttley MF (1973) J Chem Soc, Dalton Trans 1912

  36. González-Baró AC, Pis-Diez R, Piro OE, Parajón-Costa BS (2008) Polyhedron 27:502

    Article  Google Scholar 

  37. Nakamato K (1997) Infrared and Raman spectra of inorganic and coordination compounds part II: application in coordination, organometallic and bioinorganic chemistry, 5th edn. Wiley-Interscience, New York

    Google Scholar 

  38. Bhattacharya PK, Lawson HJ, Barton JK (2003) Inorg Chem 42:8811

    Article  CAS  Google Scholar 

  39. Mackey DJ, Evans SV (1976) J Chem Soc, Dalton Trans 2004

  40. Lever ABP (1984) Inorganic electronic spectroscopy, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  41. Allen FH (2002) Acta Cryst B58:380

    CAS  Google Scholar 

  42. Yang L, Crans DC, Miller SM, Lacour A, Anderson OP, Kaszynski PM, Godzala ME, Austin LD, Willsky GR (2002) Inorg Chem 41:4859

    Article  CAS  Google Scholar 

  43. Shiu K-B, Yen C-H, Liao F-L, Wang S-L (2004) Acta Crystallogr E 60:m121

    Article  Google Scholar 

  44. Ramadevi P, Kumaresan S, Sharma N (2006) Acta Crystallogr E 62:m2957

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the Isfahan University of Technology (IUT) and University of Sistan and Baluchestan (USB) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Hadadzadeh.

Additional information

Crystallographic data for the structural analyses have been deposited with the Cambridge Crystallographic Data Centre, CCDC No. 693657 for (1) and 693656 for (2).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadadzadeh, H., Rezvani, A.R., Abdolmaleki, M.K. et al. Pyridine-2,6-Dicarboxylic Acid (Dipic): Crystal Structure from Co-Crystal to a Mixed Ligand Nickel(II) Complex. J Chem Crystallogr 40, 48–57 (2010). https://doi.org/10.1007/s10870-009-9604-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-009-9604-2

Keywords

Navigation