Skip to main content
Log in

Spike propagation in dendrites with stochastic ion channels

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We investigate the effects of the stochastic nature of ion channels on the faithfulness, precision and reproducibility of electrical signal transmission in weakly active, dendritic membrane under in vitro conditions. The properties of forward and backpropagating action potentials (BPAPs) in the dendritic tree of pyramidal cells are the subject of intense empirical work and theoretical speculation (Larkum et al., 1999; Zhu, 2000; Larkum et al., 2001; Larkum and Zhu, 2002; Schaefer et al., 2003; Williams, 2004; Waters et al., 2005). We numerically simulate the effects of stochastic ion channels on the forward and backward propagation of dendritic spikes in Monte-Carlo simulations on a reconstructed layer 5 pyramidal neuron. We report that in most instances there is little variation in timing or amplitude for a single BPAP, while variable backpropagation can occur for trains of action potentials. Additionally, we find that the generation and forward propagation of dendritic Ca2+ spikes are susceptible to channel variability. This indicates limitations on computations that depend on the precise timing of Ca2+ spikes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BAC:

Backpropagation activated Ca2+ spike

AP:

Action potential

BPAP:

Backpropagating action potential

ISI:

Interstimulus interval

rp :

Reference point

References

  • Ariav G, Polsky A, Schiller J (2003) Submillisecond precision of the input-output transformation function mediated by fast sodium dendritic spikes in basal dendrites of CA1 pyramidal neurons. J. Neurosci. 23: 7750–7758.

    CAS  PubMed  Google Scholar 

  • Bernard C, Johnston D (2003) Distance-dependent modifiable threshold for action potential back-propagation in hippocampal dendrites. J. Neurophysiol. 90: 1807–1816.

    CAS  PubMed  Google Scholar 

  • Buzsaki G, Penttonen M, Nadasdy Z, Bragin A (1996) Pattern and inhibition-dependent invasion of pyramidal cell dendrites by fast spikes in the hippocampus in vivo. Proc. Natl. Acad. Sci. USA 93: 9921–9925.

    Article  CAS  PubMed  Google Scholar 

  • Chow CC, White JA (1996) Spontaneous action potentials due to channel fluctuations. Biophys. J. 71: 3013–3021.

    CAS  PubMed  Google Scholar 

  • Colbert CM, Magee JC, Hoffman DA, Johnston D (1997) Slow recovery from inactivation of Na+ channels underlies the activity-dependent attenuation of dendritic action potentials in hippocampal CA1 pyramidal neurons. J. Neurosci. 17: 6512–6521.

    CAS  PubMed  Google Scholar 

  • Debanne D (2004) Information processing in the axon. Nat. Rev. Neurosci. 5: 304–316.

    Article  CAS  PubMed  Google Scholar 

  • DeFelice LJ (1981) Introduction to Membrane Noise. Plenum Press, New York.

    Google Scholar 

  • Destexhe A, Rudolph M, Pare D (2003) The high-conductance state of neocortical neurons in vivo. Nat. Rev. Neurosci. 4: 739–751.

    Article  CAS  PubMed  Google Scholar 

  • Diba K, Lester HA, Koch C (2004) Intrinsic noise in cultured hippocampal neurons: experiment and modeling. J. Neurosci. 24: 9723–9733.

    Article  CAS  PubMed  Google Scholar 

  • Faisal AA, Laughlin SB (2002) Channel noise limits the minimum diameter of axons. Journal of Physiology-London 543: 21P–21P.

    Google Scholar 

  • Golding NL, Spruston N (1998) Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyramidal neurons. Neuron 21: 1189–1200.

    Article  CAS  PubMed  Google Scholar 

  • Golding NL, Kath WL, Spruston N (2001) Dichotomy of action-potential backpropagation in CA1 pyramidal neuron dendrites. J. Neurophysiol. 86: 2998–3010.

    CAS  PubMed  Google Scholar 

  • Hille B (2001) Ion Channels of Excitable Membranes, 3rd edn. Sinauer, Sunderland, Mass.

    Google Scholar 

  • Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput. 9: 1179–1209.

    CAS  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117: 500–544.

    CAS  PubMed  Google Scholar 

  • Hoffman DA, Magee JC, Colbert CM, Johnston D (1997) K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387: 869–875.

    Article  CAS  PubMed  Google Scholar 

  • Horikawa Y (1991) Noise effects on spike propagation in the stochastic Hodgkin-Huxley models. Biol. Cybern. 66: 19–25.

    Article  CAS  PubMed  Google Scholar 

  • Horikawa Y (1993) Simulation study on effects of channel noise on differential conduction at an axon branch. Biophys. J. 65: 680–686.

    CAS  PubMed  Google Scholar 

  • Jacobson GA, Diba K, Yaron-Jakoubovitch A, Oz Y, Koch C, Segev I, Yarom Y (2005) Subthreshold voltage noise of rat neocortical pyramidal neurones. J. Physiol. 564: 145–160.

    Article  CAS  PubMed  Google Scholar 

  • Johnston D, Wu SM-S (1995) Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass.

    Google Scholar 

  • Johnston D, Hoffman DA, Colbert CM, Magee JC (1999) Regulation of back-propagating action potentials in hippocampal neurons. Curr. Opin. Neurobiol. 9: 288–292.

    Article  CAS  PubMed  Google Scholar 

  • Jones SW (2003) Calcium channels: unanswered questions. J. Bioenerg. Biomembr. 35: 461–475.

    Article  CAS  PubMed  Google Scholar 

  • Jung HY, Mickus T, Spruston N (1997) Prolonged sodium channel inactivation contributes to dendritic action potential attenuation in hippocampal pyramidal neurons. J. Neurosci. 17: 6639–6646.

    CAS  PubMed  Google Scholar 

  • Kang J, Huguenard JR, Prince DA (1996) Development of BK channels in neocortical pyramidal neurons. J. Neurophysiol. 76: 188–198.

    CAS  PubMed  Google Scholar 

  • Kim HG, Connors BW (1993) Apical dendrites of the neocortex: correlation between sodium- and calcium-dependent spiking and pyramidal cell morphology. J. Neurosci. 13: 5301–5311.

    CAS  PubMed  Google Scholar 

  • Kuriscak E, Trojan S, Wunsch Z (2002) Model of spike propagation reliability along the myelinated axon corrupted by axonal intrinsic noise sources. Physiol. Res. 51: 205–215.

    Google Scholar 

  • Larkum ME, Zhu JJ (2002) Signaling of layer 1 and whisker-evoked Ca2+ and Na+ action potentials in distal and terminal dendrites of rat neocortical pyramidal neurons in vitro and in vivo. J. Neurosci. 22: 6991–7005.

    CAS  PubMed  Google Scholar 

  • Larkum ME, Zhu JJ, Sakmann B (1999) A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398: 338–341.

    Article  CAS  PubMed  Google Scholar 

  • Larkum ME, Zhu JJ, Sakmann B (2001) Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons. J. Physiol. 533: 447–466.

    Article  CAS  PubMed  Google Scholar 

  • Luscher C, Streit J, Lipp P, Luscher HR (1994) Action potential propagation through embryonic dorsal root ganglion cells in culture. II. Decrease of conduction reliability during repetitive stimulation. J. Neurophysiol. 72: 634–643.

    CAS  PubMed  Google Scholar 

  • Mainen ZF, Sejnowski TJ (1995) Reliability of spike timing in neocortical neurons. Science 268: 1503–1506.

    CAS  PubMed  Google Scholar 

  • Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382: 363–366.

    Article  CAS  PubMed  Google Scholar 

  • Mainen ZF, Sejnowski TJ (1998) Modeling active dendritic processes in pyramidal neurons. In: Koch C, Segev I, eds. Methods in Neuronal Modeling: From Ions to Networks, 2nd ed. MIT Press, Cambridge, MA, pp. 171–210.

    Google Scholar 

  • Manwani A, Koch C (1999) Detecting and estimating signals in noisy cable structures, II: information theoretical analysis. Neural Comput. 11: 1831–1873.

    Article  CAS  PubMed  Google Scholar 

  • Migliore M, Hoffman DA, Magee JC, Johnston D (1999) Role of an A-type K+ conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. J. Comput. Neurosci. 7: 5–15.

    Article  CAS  PubMed  Google Scholar 

  • Press WH (1992) Numerical recipes in C: The art of scientific computing. Cambridge University Press, New York.

    Google Scholar 

  • Rudolph M, Destexhe A (2003) A fast-conducting, stochastic integrative mode for neocortical neurons in vivo. J. Neurosci. 23: 2466–2476.

    CAS  PubMed  Google Scholar 

  • Schaefer AT, Larkum ME, Sakmann B, Roth A (2003) Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. J. Neurophysiol. 89: 3143–3154.

    PubMed  Google Scholar 

  • Schneidman E, Freedman B, Segev I (1998) Ion channel stochasticity may be critical in determining the reliability and precision of spike timing. Neural Comput. 10: 1679–1703.

    Article  CAS  PubMed  Google Scholar 

  • Skaugen E, Walloe L (1979) Firing behaviour in a stochastic nerve membrane model based upon the Hodgkin-Huxley equations. Acta Physiol. Scand 107: 343–363.

    Article  CAS  PubMed  Google Scholar 

  • Spruston N, Schiller Y, Stuart G, Sakmann B (1995) Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science 268: 297–300.

    CAS  PubMed  Google Scholar 

  • Steinmetz PN, Manwani A, Koch C, London M, Segev I (2000) Subthreshold voltage noise due to channel fluctuations in active neuronal membranes. J. Comput. Neurosci, 9: 133–148.

    Article  CAS  PubMed  Google Scholar 

  • Steriade M, Nunez A, Amzica F (1993) A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J. Neurosci. 13: 3252–3265.

    CAS  PubMed  Google Scholar 

  • Stuart G, Spruston N, Sakmann B, Hausser M (1997) Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends Neurosci 20: 125–131.

    Article  CAS  PubMed  Google Scholar 

  • van Rossum MC, O’Brien BJ, Smith RG (2003) Effects of noise on the spike timing precision of retinal ganglion cells. J. Neurophysiol. 89: 2406–2419.

    CAS  PubMed  Google Scholar 

  • Vetter P, Roth A, Hausser M (2001) Propagation of action potentials in dendrites depends on dendritic morphology. J. Neurophysiol. 85: 926–937.

    CAS  PubMed  Google Scholar 

  • Waters J, Helmchen F (2004) Boosting of action potential backpropagation by neocortical network activity in vivo. J. Neurosci. 24: 11127–11136.

    Article  CAS  PubMed  Google Scholar 

  • Waters J, Schaefer A, Sakmann B (2005) Backpropagating action potentials in neurones: measurement, mechanisms and potential functions. Prog. Biophys. Mol. Biol. 87: 145–170.

    Article  PubMed  Google Scholar 

  • Waters J, Larkum M, Sakmann B, Helmchen F (2003) Supralinear Ca2+ influx into dendritic tufts of layer 2/3 neocortical pyramidal neurons in vitro and in vivo. J. Neurosci. 23: 8558–8567.

    CAS  PubMed  Google Scholar 

  • White JA, Rubinstein JT, Kay AR (2000) Channel noise in neurons. Trends Neurosci. 23: 131–137.

    Article  CAS  PubMed  Google Scholar 

  • White JA, Klink R, Alonso A, Kay AR (1998) Noise from voltage-gated ion channels may influence neuronal dynamics in the entorhinal cortex. J. Neurophysiol. 80: 262–269.

    CAS  PubMed  Google Scholar 

  • Williams SR (2004) Spatial compartmentalization and functional impact of conductance in pyramidal neurons. Nat. Neurosci. 7: 961–967.

    Article  CAS  PubMed  Google Scholar 

  • Zhu JJ (2000) Maturation of layer 5 neocortical pyramidal neurons: amplifying salient layer 1 and layer 4 inputs by Ca2+ action potentials in adult rat tuft dendrites. J. Physiol. 526 Pt3: 571–587.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamran Diba.

Additional information

Action Editor : Alain Destexhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diba, K., Koch, C. & Segev, I. Spike propagation in dendrites with stochastic ion channels. J Comput Neurosci 20, 77–84 (2006). https://doi.org/10.1007/s10870-006-4770-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-006-4770-0

Keywords

Navigation