Skip to main content
Log in

A two-step patterning process increases the robustness of periodic patterning in the fly eye

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Complex periodic patterns can self-organize through dynamic interactions between diffusible activators and inhibitors. In the biological context, self-organized patterning is challenged by spatial heterogeneities (‘noise’) inherent to biological systems. How spatial variability impacts the periodic patterning mechanism and how it can be buffered to ensure precise patterning is not well understood. We examine the effect of spatial heterogeneity on the periodic patterning of the fruit fly eye, an organ composed of ∼800 miniature eye units (ommatidia) whose periodic arrangement along a hexagonal lattice self-organizes during early stages of fly development. The patterning follows a two-step process, with an initial formation of evenly spaced clusters of ∼10 cells followed by a subsequent refinement of each cluster into a single selected cell. Using a probabilistic approach, we calculate the rate of patterning errors resulting from spatial heterogeneities in cell size, position and biosynthetic capacity. Notably, error rates were largely independent of the desired cluster size but followed the distributions of signaling speeds. Pre-formation of large clusters therefore greatly increases the reproducibility of the overall periodic arrangement, suggesting that the two-stage patterning process functions to guard the pattern against errors caused by spatial heterogeneities. Our results emphasize the constraints imposed on self-organized patterning mechanisms by the need to buffer stochastic effects.

Author summary

Complex periodic patterns are common in nature and are observed in physical, chemical and biological systems. Understanding how these patterns are generated in a precise manner is a key challenge. Biological patterns are especially intriguing, as they are generated in a noisy environment; cell position and cell size, for example, are subject to stochastic variations, as are the strengths of the chemical signals mediating cell-to-cell communication. The need to generate a precise and robust pattern in this ‘noisy’ environment restricts the space of patterning mechanisms that can function in the biological setting. Mathematical modeling is useful in comparing the sensitivity of different mechanisms to such variations, thereby highlighting key aspects of their design.

We use mathematical modeling to study the periodic patterning of the fruit fly eye. In this system, a highly ordered lattice of differentiated cells is generated in a two-dimensional cell epithelium. The pattern is first observed by the appearance of evenly spaced clusters of ∼10 cells that express specific genes. Each cluster is subsequently refined into a single cell, which initiates the formation and differentiation of a miniature eye unit, the ommatidium. We formulate a mathematical model based on the known molecular properties of the patterning mechanism, and use a probabilistic approach to calculate the errors in cluster formation and refinement resulting from stochastic cell-to-cell variations (‘noise’) in different quantitative parameters. This enables us to define the parameters most influencing noise sensitivity. Notably, we find that this error is roughly independent of the desired cluster size, suggesting that large clusters are beneficial for ensuring the overall reproducibility of the periodic cluster arrangement. For the stage of cluster refinement, we find that rapid communication between cells is critical for reducing error. Our work provides new insights into the constraints imposed on mechanisms generating periodic patterning in a realistic, noisy environment, and in particular, discusses the different considerations in achieving optimal design of the patterning network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Elowitz, M.B., Levine, A.J., Siggia, E.D., Swain, P.S.: Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002). doi:10.1126/science.1070919

    Article  ADS  Google Scholar 

  2. Bar-Even, A., Paulsson, J., Maheshri, N., Carmi, M., O’Shea, E., Pilpel, Y., Barkai, N.: Noise in protein expression scales with natural protein abundance. Nat. Genet. 38, 636–43 (2006). doi:10.1038/ng1807

    Article  Google Scholar 

  3. Newman, J.R.S., Weissman, J.S.: Systems biology: many things from one. Nature 444, 561–562 (2006). doi:10.1038/nature05407

    Article  ADS  Google Scholar 

  4. Barkai, N., Shilo, B.-Z.: Variability and robustness in biomolecular systems. Mol. Cell 28, 755–60 (2007). doi:10.1016/j.molcel.2007.11.013

    Article  Google Scholar 

  5. Stanojević, D., Hoey, T., Levine, M.: Sequence-specific DNA-binding activities of the gap proteins encoded by hunchback and Krüppel in Drosophila. Nature 341, 331–335 (1989). doi:10.1038/341331a0

    Article  ADS  Google Scholar 

  6. Eldar, A., Rosin, D., Shilo, B.-Z., Barkai, N.: Self-enhanced ligand degradation underlies robustness of morphogen gradients. Dev. Cell 5, 635–646 (2003). http://www.ncbi.nlm.nih.gov/pubmed/14536064

    Article  Google Scholar 

  7. Eldar, A., Shilo, B -Z, Barkai, N.: Elucidating mechanisms underlying robustness of morphogen gradients. Curr. Opin. Genet. Dev. 14, 435–439 (2004). doi:10.1016/j.gde.2004.06.009

    Article  Google Scholar 

  8. Voas, M.G., Rebay, I.: Signal integration during development: insights from the Drosophila eye. Dev. Dyn. 229, 162–175 (2004). doi:10.1002/dvdy.10449

    Article  Google Scholar 

  9. Kumar, J.P.: Building an ommatidium one cell at a time. Dev. Dyn. 241, 136–149 (2012). doi:10.1002/dvdy.23707

    Article  Google Scholar 

  10. Kumar, J.P.: My what big eyes you have: how the Drosophila retina grows. Dev. Neurobiol. 71, 1133–1152 (2011). doi:10.1002/dneu.20921

    Article  Google Scholar 

  11. Frankfort, B.J., Mardon, G.: R8 development in the Drosophila eye: a paradigm for neural selection and differentiation. Development 129, 1295–1306 (2002). http://www.ncbi.nlm.nih.gov/pubmed/11880339

    Google Scholar 

  12. Baker, N.E., Mlodzik, M., Rubin, G.M.: Spacing differentiation in the developing Drosophila eye: a fibrinogen-related lateral inhibitor encoded by scabrous. Science 250, 1370–1377 (1990). http://www.ncbi.nlm.nih.gov/pubmed/2175046

    Article  ADS  Google Scholar 

  13. Jarman, A.P., Grell, E.H., Ackerman, L., Jan, L.Y., Jan, Y.N.: Atonal is the proneural gene for Drosophila photoreceptors. Nature 369, 398–400 (1994). doi:10.1038/369398a0

    Article  ADS  Google Scholar 

  14. Baonza, A., Casci, T., Freeman, M.: A primary role for the epidermal growth factor receptor in ommatidial spacing in the Drosophila eye. Curr. Biol. 11, 396–404 (2001). Available: http://www.ncbi.nlm.nih.gov/pubmed/11301250

    Article  Google Scholar 

  15. Lubensky, D.K., Pennington, M.W., Shraiman, B.I., Baker, N.E.: A dynamical model of ommatidial crystal formation. Proc. Natl. Acad. Sci. U.S.A. 108, 11145–11150 (2011). doi:10.1073/pnas.1015302108

    Article  ADS  Google Scholar 

  16. Heberlein, U., Wolff, T., Rubin, G.M.: The TGF β homolog dpp and the segment polarity gene hedgehog are required for propagation of a morphogenetic wave in the Drosophila retina. Cell 75, 913–926 (1993). doi:10.1016/0092-8674(93)90535-X

    Article  Google Scholar 

  17. Roignant, J.-Y., Treisman, J.E.: Pattern formation in the Drosophila eye disc. Int. J. Dev. Biol. 53, 795–804 (2009). doi:10.1387/ijdb.072483jr

    Article  Google Scholar 

  18. Lee, E.C., Hu, X., Yu, S.Y., Baker, N.E.: The scabrous gene encodes a secreted glycoprotein dimer and regulates proneural development in Drosophila eyes. Mol. Cell. Biol 16, 1179–1188 (1996). http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=231100&tool=pmcentrez&rendertype=abstract

    Article  Google Scholar 

  19. Baonza, A., Freeman, M.: Notch signalling and the initiation of neural development in the Drosophila eye. Development 128, 3889–3898 (2001). http://www.ncbi.nlm.nih.gov/pubmed/11641214

    Google Scholar 

  20. Barad, O, Rosin, D, Hornstein, E, Barkai, N.: Error minimization in lateral inhibition circuits. Sci. Signal. 3(129), ra51 (2010). doi:10.1126/scisignal.2000857

    Article  Google Scholar 

  21. Treisman, J.E.: Retinal differentiation in Drosophila. Wiley Interdiscip. Rev. Dev. Biol. 2, 545–557 (2013). doi:10.1002/wdev.100

    Article  Google Scholar 

  22. Ready, D.F., Hanson, T.E., Benzer, S.: Development of the Drosophila retina, a neurocrystalline lattice. Dev. Biol. 53, 217–240 (1976). doi:10.1016/0012-1606(76)90225-6

    Article  Google Scholar 

  23. Pennington, M.W., Lubensky, D.K.: Switch and template pattern formation in a discrete reaction-diffusion system inspired by the Drosophila eye. Eur. Phys. J. E Soft. Matter. 33, 129–148 (2010). doi:10.1140/epje/i2010-10647-6

    Article  Google Scholar 

  24. Roy, S., Hsiung, F., Kornberg, T.B.: Specificity of Drosophila cytonemes for distinct signaling pathways. Science 332, 354–358 (2011). doi:10.1126/science.1198949

    Article  ADS  Google Scholar 

  25. Chou, Y.-H., Chien, C.-T.: Scabrous controls ommatidial rotation in the Drosophila compound eye. Dev. Cell 3, 839–850 (2002). http://www.ncbi.nlm.nih.gov/pubmed/12479809

    Article  Google Scholar 

  26. Gavish, A., Shwartz, A., Weizman, A., Schejter, E., Shilo, B.Z., Barkai, N.: Periodic patterning of the Drosophila eye is stabilized by the diffusible activator Scabrous. Nat. Commun. 7, 10461. doi:10.1038/ncomms10461

Download references

Acknowledgments

We thank I. Averbukh and M. Chapal from the Barkai laboratory for useful discussion. This work was funded by grants from the ERC and the Minerva Foundation to N. B. who is an incumbent of the Lorna Greenberg Scherzer Professorial Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avishai Gavish.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 436 KB)

Appendices

Appendix: A: Mathematical model for cluster formation

The formulation of a time-based approach model for understanding the process of cluster formation is described in detail in a separate work (Ref. [15] and [26] in the main text), and is mentioned here briefly for completeness. This model considers three variables: a long-range, non-autonomous activator h, a non-autonomous short-range inhibitor u and a self-inducing activator a. A selected cell is a cell that stably expresses a. The equations that describe the interplay between these variables in one dimension are:

$$\begin{array}{@{}rcl@{}} \tau_{a}\frac{da}{dt}&=&P_{a}\theta \left( a-a_{a} \right)-\lambda_{a}a+G\theta \left( h-h_{1} \right)\left( 1-\theta \left( u-u_{1} \right) \right)\\ \tau_{h}\frac{dh}{dt}&=&P_{h}\theta \left( a-a_{h} \right)-\lambda_{h}a+D_{h}\frac{\partial^{2}h}{\partial x^{2}}\\ \tau_{u}\frac{du}{dt}&=&P_{u}\theta \left( a-a_{u} \right)-\lambda_{u}a+D_{u}\frac{\partial^{2}u}{\partial x^{2}} \end{array} $$
(13)

where τ a ,τ h ,and τ u denote the typical time scales of a, h and u that we used to normalize all other parameters; P a ,P h ,and P u are the respective production constants; λ a ,λ h ,and λ u are the respective degradation rates; D h ,and D u are the respective diffusion constants and 𝜃(a) is the Heaviside step function, which is equal to 1 for positive values and 0 otherwise.

Assuming a uniform propagation of h with a speed v, we replace the precise term for h with:

$$\begin{array}{@{}rcl@{}} \tau_{h}\frac{dh}{dt}=P_{h}\theta \left( \textit{v}t-x \right)+D_{h}\frac{\partial^{2}h}{\partial x^{2}}-h \end{array} $$
(14)

which has the solution:

$$h\left( x,t \right)=\left\{\begin{array}{lc} P_{h}-P_{h}\left( \frac{\textit{v}\tau_{h}+c_{1}}{2c_{1}} \right)exp\left[ \left( \frac{-\textit{v} \tau_{h}+c_{1}}{2D_{h}} \right)\bar{x} \right],& \bar{x}<0 \\ P_{h}\left( \frac{-\textit{v}\tau_{h}+c_{1}}{2c_{1}} \right)exp\left[ \left( \frac{-\textit{v}\tau_{h}-c_{1}}{2D_{h}} \right)\bar{x} \right], & \bar{x}>0 \end{array}\right. $$
$$ c_{1}=\sqrt{{(\textit{v}\tau_{h})}^{2}+4D_{h}}. $$
(15)

We can now calculate the time when a cell i at position x is activated (h>h 1), assuming zero initial level of a:

$$ t_{i}^{ac}=\frac{1}{\textit{v}}\chi+\delta_{0} ; \delta_{0}=\frac{1}{\textit{v}}\frac{2D_{h}}{\textit{v} \tau_{h}+c_{1}}\ln[\frac{h_{1}}{P_{h}}(\frac{2c_{1}}{-\textit{v}\tau_{h}+c_{1}})], $$
(16)

Similarly, the times when each cell becomes selected (a>a a ) and when the first cell in each cluster reaches the threshold for inhibition production are given by:

$$\begin{array}{@{}rcl@{}} t_{i}^{r}=t_{i}^{ac}+\delta_{1} ; \delta_{1}=\left( \frac{\tau_{a}}{\lambda_{a}} \right)\ln [\frac{G}{G-a_{a}\lambda_{a}}], \end{array} $$
(17)
$$\begin{array}{@{}rcl@{}} t_{i}^{in}={t_{i}^{r}}+\delta_{2} ; \delta_{2}=\left( \frac{\tau_{a}}{\lambda_{a}} \right)\ln [\frac{a_{a}\lambda_{a}-(G+P_{a})}{a_{u}\lambda_{a}-(G+P_{a})}], \end{array} $$
(18)

The number of cells that become refractory to inhibitory signals before the first cell reaches the threshold for inhibition production determines cluster size n. Accordingly,

$$ n\frac{1}{\textit{v}}+{t_{1}^{r}}<t_{1}^{in}. $$
(19)

Substituting (17), (18) and (19), we obtain:

$$ n=\left\lceil \frac{{\textit{v}\tau}_{a}}{\lambda_{a}}\ln {[\frac{a_{a}\lambda_{a}-(G+P_{a})}{a_{u}\lambda_{a}-(G+P_{a})}]} \right\rceil. $$
(20)

Appendix: B: Analytical term for error probability in cluster formation for the case n=2

The error in the general case for n=2, given by (7) can be written analytically as:

$$ \varepsilon =1-\left\{\begin{array}{lll} \delta_{1}+\delta_{2}-\frac{1}{2}\left( \delta_{1}^{2}+{\delta_{2}^{2}} \right)&\tau_{b}>1; \delta_{1}=min\left\{ \delta_{1},1 \right\};\delta_{2}&=min\left\{ \delta_{2},1 \right\}\\ \delta_{1}\cdot \delta_{2}+\frac{1}{2}{\delta_{2}^{2}}+\left( \eta +\gamma + \varphi \right) &\prod\limits_{i=1}^{m} \left( 1+i\left( \delta_{1}+\delta_{2} \right)-t^{in} \right)& \frac{1}{j}<\tau_{b}<\frac{1}{j-1}, \end{array}\right. $$
(21)

where j =2,3,4… and the operators η(t in),γ(t in) and φ(t in) are given by:

$$\eta =\sum\limits_{m=1}^{q} {\{\delta_{1}+\delta_{2}+\min \left[ m-1,j-2 \right]\cdot \left( \delta_{1}+\delta_{2} \right)\}{\int}_{m(\delta_{1}+\delta_{2})}^{\min\{\left( m+1 \right)\left( \delta_{1}+\delta_{2} \right),1+\delta_{1}\}} {dt^{in}}} $$
$$\gamma =\sum\limits_{m=1}^{j-2} {\int}_{m(\delta_{1}+\delta_{2})}^{(m+1)(\delta_{1}+\delta_{2})} dt_{2}^{r}{\int}_{t_{2}^{r}}^{(m+1)(\delta_{1}+\delta_{2})} {dt^{in}} $$
$$ \varphi ={\int}_{(j-1)(\delta_{1}+\delta_{2})}^{1} {{dt}_{2}^{r}\sum\limits_{m=j-1}^{n} {\int}_{\max\{t_{2 ,}^{r}m\left( \delta_{1}+\delta_{2} \right)\}}^{\min\{1+\delta_{1}, \left( m+1 \right)\left( \delta_{1}+\delta_{2} \right)\}}{dt^{in}}} $$
(22)

and where \(-1\le \, q=\left \lfloor \frac {1+x}{x+y} \right \rfloor \le j\).

Here, q = j if P(t in) overlaps with \(P(t_{j+2}^{r})\), corresponding with the possible overlap of P(t in) with \(P({t_{4}^{r}})\) in Fig. 3a in the main text.

The error probability ε(τ b ,δ 1) above stands for n=2, in which t in must be chosen prior to any number of overlapping cells chosen from the distribution for \({t}_{3}^{r}\) and the distributions to follow, but succeeds only \({t_{2}^{r}}\). Obtaining ε for a general n (8) requires demanding t in to succeed a larger number of cells determined by τ b , the net effect being a higher error probability.

Appendix: C: Analytical term for error probability in cluster refinement

As described in the main text, it is convenient to first define the probability for a cell i to be successfully inhibited by the first cell producing inhibition as:

$$ Q_{i}\left( {t_{I}^{D}} \right)={\int}_{\max\{\bar{{ t}_{i}^{D}} -\tau_{\sigma} ,{t_{I}^{D}}+\tau \}}^{\bar{{ t}_{i}^{D}} +\tau_{\sigma} } {\frac{1}{2\tau_{\sigma} }dt=\quad\left\{{\begin{array}{cl} 1&\qquad \bar{{ t}_{i}^{D}}-\tau_{n}>{t_{I}^{D}}+\tau \\ \frac{\bar{{ t}_{i}^{D}}+\tau_{n}-({t_{I}^{D}}+\tau )}{2\tau_{\sigma} }&\qquad \textit{otherwise} \end{array}}\right. } $$
(23)

The probability for error refinement (after normalizing all terms by\( \frac {1}{2\tau _{\sigma } })\), given by (11), can be written analytically as (see Table 1 for integral limits):

$$ \varepsilon =\left\{{\begin{array}{lr} 1-{\int}_{<{t_{1}^{D}}>-\frac{1}{2}}^{\min\{<{t_{1}^{D}}>+\frac{1}{2},T+\theta (\frac{3}{2}-n_{1})\}}dt_{I}^{D}\left( \begin{array}{c} n_{1}\\1 \end{array} \right)Q_{1}^{n_{1}-1}& \tau_{b}>1+\tau \\ 1-\mathrm{\mu -\eta} -\mathrm{\lambda} & \frac{1+\tau}{j}<\tau_{b}<\frac{1+\tau }{j-1} ;j=2,3,4\mathellipsis \end{array}}\right. $$
(24)
Table 1 Limits of the integrals in (24)
$$\mathrm{\mu} =\sum\limits_{m=1}^{j} {\int}_{lim\, 1}^{lim\, 2} {\left( {\begin{array}{c} n_{1}\\ 1 \end{array}} \right){d{t_{I}^{D}}Q}_{1}^{n_{1}-1}\cdot \prod\limits_{k=2}^{m} Q_{k}^{n_{k}}} $$
$$\mathrm{\eta =}\sum\limits_{m=2}^{j-1} \sum\limits_{q=m}^{j} {\int}_{lim 3}^{lim 4} {\left( {\begin{array}{c} n_{m}\\ 1 \end{array}} \right){d{t_{I}^{D}}Q}_{m}^{n_{m}-1}\cdot \prod\limits_{l=1}^{m-1} Q_{l}^{n_{l}} \cdot \prod\limits_{k=m+1}^{q} Q_{k}^{n_{k}}} $$
$$\mathrm{\lambda =}{\int}_{lim 5}^{lim 6} \left( {\begin{array}{c} n_{j}\\ 1 \end{array}} \right) {d{t_{I}^{D}}Q}_{j}^{n_{j}-1}\cdot \prod\limits_{k=1}^{j-1} Q_{k}^{n_{k}} $$

where n 1n j are the number of cells in the columns 1…j. We assumed the inhibition delay to be smaller than the distribution width and the bias (τ< min{τ b ,1}). \(\theta (\frac {3}{2}-n_{1})\) in the upper limit for τ b >1 + τ is the step function that equals 1 if n 1=1 (in which case we demand ε=0 regardless of T), or otherwise equals 0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavish, A., Barkai, N. A two-step patterning process increases the robustness of periodic patterning in the fly eye. J Biol Phys 42, 317–338 (2016). https://doi.org/10.1007/s10867-016-9409-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-016-9409-4

Keywords

Navigation