Skip to main content

Advertisement

Log in

A tree swaying in a turbulent wind: a scaling analysis

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

A tentative scaling theory is presented of a tree swaying in a turbulent wind. It is argued that the turbulence of the air within the crown is in the inertial regime. An eddy causes a dynamic bending response of the branches according to a time criterion. The resulting expression for the penetration depth of the wind yields an exponent which appears to be consistent with that pertaining to the morphology of the tree branches. An energy criterion shows that the dynamics of the branches is basically passive. The possibility of hydrodynamic screening by the leaves is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lumley, J.L.: Drag reduction by additives. Annu. Rev. Fluid Mech. 1(1), 367–384 (1969). doi:10.1146/annurev.fl.01.010169.002055

    Article  ADS  Google Scholar 

  2. Lumley, J.L.: Drag reduction in turbulent flow by polymer additives. J. Polym. Sci.: Macrom. Rev. 7(1), 263–290 (1973). doi:10.1002/pol.1973.230070104

    Google Scholar 

  3. Lumley, J.L.: Drag reduction in two phase and polymer flows. Phys. Fluids 20(10), S64–S71 (1977). doi:10.1063/1.861760

    Article  ADS  Google Scholar 

  4. De Gennes, P.-G.: Towards a scaling theory of drag reduction. Physica A 140(1), 9–25 (1986). doi:10.1016/0378-4371(86)90200-1

    Article  ADS  Google Scholar 

  5. Tabor, M., De Gennes, P.G.: A cascade theory of drag reduction. Europhys. Lett. 2(7), 519 (1986). doi:10.1209/0295-5075/2/7/005

    Article  ADS  Google Scholar 

  6. Procaccia, I., L’vov, V.S., Benzi, R.: Colloquium: theory of drag reduction by polymers in wall-bounded turbulence. Rev. Mod. Phys. 80(1), 225 (2008). doi:10.1103/RevModPhys.80.225

    Article  ADS  Google Scholar 

  7. de Langre, E.: Effects of wind on plants. Annu. Rev. Fluid Mech. 40, 141–168 (2008). doi:10.1146/annurev.fluid.40.111406.102135

    Article  ADS  MathSciNet  Google Scholar 

  8. James, K.R., Haritos, N., Ades, P.K.: Mechanical stability of trees under dynamic loads. Am. J. Bot. 93(10), 1522–1530 (2006). doi:10.3732/ajb.93.10.1522

    Article  Google Scholar 

  9. Spatz, H.-C., Brüchert, F., Pfisterer, J.: Multiple resonance damping or how do trees escape dangerously large oscillations. Am. J. Bot. 94(10), 1603–1611 (2007). doi:10.3732/ajb.94.10.1603

    Article  Google Scholar 

  10. Rodriguez, M., de Langre, E., Moulia, B.: A scaling law for the effects of architecture and allometry on tree vibration modes suggests a biological tuning to modal compartmentalization. Am. J. Bot. 95(12), 1523–1537 (2008). doi:10.3732/ajb.0800161

    Article  Google Scholar 

  11. Sellier, D., Fourcaud, T.: A mechanical analysis of the relationship between free oscillations of pinus pinaster ait. saplings and their aerial architecture. J. Exp. Bot. 56(416), 1563–1573 (2005). doi:10.1093/jxb/eri151

    Article  Google Scholar 

  12. Sellier, D., Fourcaud, T., Lac, P.: A finite element model for investigating effects of aerial architecture on tree oscillations. Tree Physiol. 26(6), 799–806 (2006). doi:10.1093/treephys/26.6.799

    Article  Google Scholar 

  13. Sellier, D., Brunet, Y., Fourcaud, T.: A numerical model of tree aerodynamic response to a turbulent airflow. Forestry 81(3), 279–297 (2008). doi:10.1093/forestry/cpn024

    Article  Google Scholar 

  14. Sellier, D., Fourcaud, T.: Crown structure and wood properties: influence on tree sway and response to high winds. Am. J. Bot. 96(5), 885–896 (2009). doi:10.3732/ajb.0800226

    Article  Google Scholar 

  15. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics Course of Theoretical Physics, Vol. 6. Pergamon, London (1959)

  16. van Dyke, M.D.: An Album of Fluid Motion. Parabolic Press, Stanford (1982)

    Google Scholar 

  17. Oke, T.R.: Boundary Layer Climates, vol. 5, 2nd edn. Routledge (1987)

  18. Taylor, G.I.: Reports and measurements of the advisory committee for aeronautics no. 345 (1917). In: Batchelor, G.K. (ed.) Meteorology, Oceanography and Turbulent Flow, vol. 2 of the Scientific Papers of G.I. Taylor. Cambridge University Press (1960)

  19. West, G.B., Brown, J.H., Enquist, B.J.: A general model for the structure and allometry of plant vascular systems. Nature 400(6745), 664–667 (1999). doi:10.1038/23251

    Article  ADS  Google Scholar 

  20. Mencuccini, M.: Hydraulic constraints in the functional scaling of trees. Tree Physiol. 22(8), 553–565 (2002). doi:10.1093/treephys/22.8.553

    Article  Google Scholar 

  21. Wei, Z., Mandre, S., Mahadevan, L.: The branch with the furthest reach. Europhys. Lett. 97(1), 14005 (2012). doi:10.1209/0295-5075/97/14005

    Article  ADS  Google Scholar 

  22. Landau, L.D., Lifshitz, E.M.: Theory of Elasticity Course of Theoretical Physics, Vol. 7. Pergamon, Oxford (1986)

  23. Lau, J.H.: Vibration frequencies of tapered bars with end mass. J. Appl. Mech. 51(1), 179–181 (1984). doi:10.1115/1.3167564

    Article  ADS  Google Scholar 

  24. Joseph, D.D., Nield, D.A., Papanicolaou, G.: Nonlinear equation governing flow in a saturated porous medium. Water Resour. Res. 18(4), 1049–1052 (1982). doi:10.1029/WR018i004p01049

    Article  ADS  Google Scholar 

  25. Roper, M., Brenner, M.P.: A nonperturbative approximation for the moderate Reynolds number Navier–Stokes equations. Proc. Natl. Acad. Sci. U.S.A. 106(9), 2977–2982 (2009). doi:10.1073/pnas.0810578106

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. van Dyke, M.D.: Perturbation Methods in Fluid Dynamics. Parabolic Press (1975)

  27. Freed, K.F., Edwards, S.F.: Polymer viscosity in concentrated solutions. J. Chem. Phys. 61(9), 3626–3633 (1974). doi:10.1063/1.1682545

    Article  ADS  Google Scholar 

  28. Odijk, T.: Translational friction coefficient of hydrodynamically screened rodlike macromolecules. Macromolecules 19(7), 2073–2074 (1986). doi:10.1021/ma00161a048

    Article  ADS  Google Scholar 

  29. De Gennes, P.-G.: Scaling Concepts in Polymer Physics. Cornell University Press (1979)

  30. Panshin, A.J., de Zeeuw, C.: Textbook of Wood Technology, vol. 1, 3rd edn. McGraww-Hill, New York (1970)

  31. Finnigan, J.: Turbulence in plant canopies. Annu. Rev. Fluid Mech. 32(1), 519–571 (2000). doi:10.1146/annurev.fluid.32.1.519

  32. Theckes, B., De Langre, E., Boutillon, X.: Damping by branching: a bioinspiration from trees. Bioinspir. Biomim. 6(4), 046010 (2011). doi:10.1088/1748-3182/6/4/046010

    Article  ADS  Google Scholar 

  33. Vogel, S.: Drag reconfiguration of broad leaves in high winds. J. Exp. Bot. 40(8), 941–948 (1989). doi:10.1093/jxb/40.8.941

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theo Odijk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odijk, T. A tree swaying in a turbulent wind: a scaling analysis. J Biol Phys 41, 1–7 (2015). https://doi.org/10.1007/s10867-014-9361-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-014-9361-0

Keywords

Navigation