Skip to main content
Log in

Water in the orchestration of the cell machinery. Some misunderstandings: a short review

  • Review
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Nowadays, biologists can explore the cell at the nanometre level. They discover an unsuspected world, amazingly overcrowded, complex and heterogeneous, in which water, also, is complex and heterogeneous. In the cell, statistical phenomena, such as diffusion, long considered as the main transport for water soluble substances, must be henceforth considered as inoperative to orchestrate cell activity. Results at this level are not yet numerous enough to give an exact representation of the cell machinery; however, they are sufficient to cease reasoning in terms of statistics (diffusion, law of mass action, pH, etc.) and encourage cytologists and biochemists to prospect thoroughly the huge panoply of the biophysical properties of macromolecule-water associations at the nanometre level. Our main purpose, here, is to discuss some of the more common misinterpretations due to the ignorance of these properties, and expose briefly the bases for a better approach of the cell machinery. Giorgio Careri, who demonstrated the correlation between proton currents at the surface of lysozyme and activity of this enzyme was one of the pioneers of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Organization of water into H-bonded linear chains of molecules has been often referred as “ice-like” water: indeed, this structure observed in the common Ih-ice is not present in all the types of ice.

References

  1. Goodsell, D.S.: Inside a living cell. Trends Biochem. Sci. 16, 203–206 (1991)

    Article  Google Scholar 

  2. Goodsell, D.S. (ed.): The Machinery of Life, 2nd edn. Springer, New York (2009)

    Google Scholar 

  3. Porter, K.R.: The cytoplasmic matrix and the integration of cellular function. Proc. of a Conference sponsored by Fogarty Internatl. Center, Natl. Institutes of Health. J. Cell Biol. 99, 1–248 (1984)

    Article  Google Scholar 

  4. Porter K.R.: The cytomatrix: a short history of its study. J. Cell Biol. 99, 3–14 (1984)

    Article  Google Scholar 

  5. Zierold, K.: The determination of wet weight concentrations of elements in freeze-dried cryosections from biological cells. Scanning Electron Microsc. 2, 713–724 (1986)

    Google Scholar 

  6. Mentré, P. (ed.): Coquille d’hydratation des macromolécules, eau “ liée ” et eau “ structurée ”. In: L’eau dans la cellule. Une interface hétérogène et dynamique des macromolécules, pp. 65–82. Masson-Dunod, Paris (1995)

  7. Mentré, P., Hui Bon Hoa, G.: The effects of high hydrostatic pressures on living cells: a consequence of the properties of macomolecules and macromolecule-associated water. Int. Rev. Cytol. 201, 1–84 (2001)

    Article  Google Scholar 

  8. Klotz, I.M.: Water. In: Kasha, M., Pullman, B. (eds.) Horizons in Biochemistry. Albert Szent-Györgyi dedicatory volume, pp. 523–550. Academic, New York (1962)

    Google Scholar 

  9. Mentré, P.: An introduction to “Water in the cell”: tamed hydra? In: Water in the Cell (Mentré, P. guest ed.). Cell. Mol. Biol. 47, 709–715 (2001)

  10. Leitner, D.M., Gruebele, M., Havenith, M.: Solvation dynamics of biomolecules: modeling and terahertz experiments. HFSP J. 2, 314–323 (2008)

    Article  Google Scholar 

  11. Cameron, I.L., Fullerton, G.D.: Non-bulk like water on cellular interfaces. In: Pollack, G. (ed.) Water and the Cell, pp. 315–323. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P. (eds): Molecular motors. In: Molecular Biology of the Cell, 4th ed., pp. 949–968. Garland Science, New York (2002)

  13. Lasek, R.J., Garner, J.A., Brady, S.T.: Axonal transport of the cytoplasmic matrix. J. Cell Biol. 99, 212s–221s (1984)

    Article  Google Scholar 

  14. Matveev, V.V.: Protoreaction of protoplasm. In: Water in the Cell (Mentré, P., ed.). Cell. Mol. Biol. 51, 715–723 (2005)

  15. Troshin, A.S. (ed.): The protoplasm as a colloidal system. In: Problems of Cell Permeability, pp. 57–73 (1956). Translated from Russian by Widdas, W.F., Pergamon, Oxford (1966)

  16. Troshin, A.S.: Do live cells have osmotic properties? In: Problems of Cell Permeability, pp. 30–56 (1956). Translated from Russian by Widdas, W.F., Pergamon, Oxford (1966)

  17. Mentré, P. (ed.): L’eau dans la cellule. Une interface hétérogène et dynamique des macromolécules, p. 292. Masson-Dunod (1995)

  18. Pollack, G.H.: Cells, Gels and the Engines of Life. A New, Unifying Approach to Cell Function. Ebner, Seattle (2001)

    Google Scholar 

  19. Pollack, G.H., Cameron, I.L., Wheatley, D.N. (ed.): Water and the Cell. Springer, New York (2006)

    Google Scholar 

  20. Chaplin, M.: http://www.lsbu.ac.uk/water/ (2009)

  21. Schrödinger, E. (ed.): What is Life? The Physical Aspects of the Living Cell (1944)

  22. Ling, G.N.: Solute exclusion by polymer and protein-dominated water: correlation with results of nuclear magnetic resonance (NMR) and calorimetric studies and their significance for the understanding of the physical state of water in living cells. Scanning Microsc. 2, 871–884 (1988)

    Google Scholar 

  23. Hofmeister, F: Zur Lehre von der Wirkung der Salze. Arch. Exp. Pathol. Pharmakol. 24, 247–260 (1888)

    Article  Google Scholar 

  24. Ling, G.N.: A Physical Theory of the Living State: The Association-Induction Hypothesis, pp. 1–680. Blaisdell Waltham (1962)

  25. Ling, G.N. (ed.): In Search of the Physical Basis of Life. Plenum, New York (1984)

  26. Ling, G.N. (ed.): The membrane pump theory. In: A Revolution in the Physiology of the Living Cell, pp. 9–30. Krieger, Malabar (1992)

  27. Wiggins, P., MacClement, B.A.E.: Two states of water found in hydrophobic clefts: their possible contribution to mechanism of action of pumps and other enzymes. Int. Rev. Cytol. 108, 249–304 (1987)

    Article  Google Scholar 

  28. Wiggins, P., Van Ryn, R.T.: Changes in ionic selectivity with changes in density in gels and cells. Biophys. J. 58, 585–596 (1987)

    Article  Google Scholar 

  29. Chen, X., Flores, S.C., Lim, S.M., Zhang, Y., Yang, T., Kherb, J., Cremer, P.: Specific anion effects on water structure adjacent to protein monolayers. Langmuir 26, 16447–16454 (2010)

    Article  Google Scholar 

  30. Zhang, Y., Cremer P.S.: Interactions between macromolecules and ions: the Hofmeister series. Curr. Opinions Chem. Biol. 10, 658–663 (2006)

    Article  Google Scholar 

  31. Glasstone, S. (ed.): Electrochemistry. In: Textbook of Physical Chemistry, pp. 884–1043. MacMillan, London (1948)

  32. Simson, J.A.V., Spicer, S.S.: Selective subcellular localization of cations with variants of the potassium (pyro)antimonate technique. J. Histochem. Cytochem. 23, 575–598 (1975)

    Article  Google Scholar 

  33. Mentré, P., Halpern, S.: Localization by pyroantimonate method and electron probe microanalysis of calcium and sodium in skeletal muscle of mouse. J. Histochem. Cytochem. 36, 55–64 (1988)

    Article  Google Scholar 

  34. Mentré, P.: Taking into account the cell water properties for the cytochemical detection of cations: embedding into melamine after pyroantimonate fixation. In: Vasilescu, D., Jaz, J., Packer, L., Pullman, B. (eds.) Water and Ions in Biomolecular Systems. Proceed. 5th Unesco Internatl. Conf., pp. 287–294. Birkhäuser, Basel (1990)

  35. Mentré, P.: Preservation of the diffusible cations for SIMS microscopy. I. A problem related to the state of water in the cell. Biol. Cell. 74, 19–30 (1992)

    Article  Google Scholar 

  36. Mentré, P. Halpern, S.: Application of the pyroantimonate method and electron probe microanalysis to the study of glycogen metabolism in liver. Scanning Microsc. 3, 495–504 (1989)

    Google Scholar 

  37. Mentré, P. (ed.): Transports au sein de la cellule. In: L’eau dans la cellule. Une interface hétérogène et dynamique des macromolécules, pp. 207–233. Masson-Dunod, Paris (1995)

  38. Berridge, M.J., Galone A.: Cytosolic oscillators. FASEB J. 2, 3074–3082 (1988)

    Google Scholar 

  39. Rasmussen, H.: The cycling of calcium as an intracellular messenger. Sci. Am. 261, 66–73 (1989)

    Article  Google Scholar 

  40. Swann, K., Ozil, J.P.: Dynamics of the calcium signal that triggers mammalian egg activation: Int. Rev. Cytol. 152, 183–222 (1994)

    Article  Google Scholar 

  41. Rand, R.P.: Raising water to new heights. Science 256, 618 (1992)

    Article  ADS  Google Scholar 

  42. Colombo, M.F., Rau, D.C., Parsegian, V.A.: Protein solvation in allosteric regulation: a water effect on hemoglobin? Science 256, 655–659 (1992)

    Article  ADS  Google Scholar 

  43. Teissié, J., Prats, M., Soucaille, P., Tocanne, J.F.: Evidence for conduction of protons along the interface between water and a polar lipid monolayer. Proc. Natl. Acad. Sci. U.S.A. 82, 3217–3221 (1985)

    Article  ADS  Google Scholar 

  44. Kell, D.B.: On the functional proton current pathway of electron transport phosphorylation. An electrodic view. Biochim. Biophys. Acta 549, 55–99 (1979).

    Google Scholar 

  45. Careri, G., Giansanti, A., Rupley J.A.: Proton percolation on hydrated lysozyme powder. Proc. Natl. Acad. Sci. U.S.A. 83, 6810–6814 (1986)

    Article  ADS  Google Scholar 

  46. Paddock, M.L., McPherson, P.H., Feher, G., Okamura, M.Y.: Pathway of proton transfer in bacterial reaction centers: replacement of serine-L223 by alanine inhibits electron and proton transfers associated with reduction of quinone to dihydroquinone. Proc. Natl. Acad. Sci. U.S.A. 87, 6803–6807 (1990)

    Article  ADS  Google Scholar 

  47. Wikström, M., Verkhovsky, M.I., Hummer, G.: Water-gated mechanism of proton translocation by cytochrome c oxidase. Biochim. Biophys. Acta 1604, 61–65 (2003)

    Article  Google Scholar 

  48. Yin, H., Feng, G., Clore, G.M., Hummer, G., Rasaiah, J.C.: Water in the polar and nonpolar cavities of the protein interleukin-1β. J. Phys. Chem., B. 114, 16290–16297 (2010)

    Article  Google Scholar 

  49. Careri, G., Geraci, M., Giansanti, A., Rupley J.A.: Protonic conduction of hydrated lysozyme powders at megahertz frequencies. Proc. Natl. Acad. Sci. U.S.A. 82, 5342–5346 (1985)

    Article  ADS  Google Scholar 

  50. Careri, G., Consolini, G., Bruni F.: Proton conductivity in hydrated proteins. Evidence for percolation. In: Vasilescu, D., Jaz, J., Packer, L., Pullman, B. (eds.) Water and Ions in Biomolecular Systems. Proceed. 5th Unesco Internatl. Conf., pp. 165–170. Birkhäuser, Basel (1990)

    Chapter  Google Scholar 

  51. Careri, G., Peyrard, M.: Physical aspects of the weakly hydrated protein surface. In: Water in the Cell (Mentré, P. ed.). Cell Mol. Biol. 47, 745–756 (2001)

    Google Scholar 

  52. Albrecht-Buelher, G.: In defense of “nonmolecular” biology. Int. Rev. Cytol. 120, 191–241 (1990)

    Article  Google Scholar 

  53. Mentré, P. (ed.): L’eau, une interface hétérogène et dynamique des macromolecules. In: L’eau dans la cellule. Une interface hétérogène et dynamique des macromolécules, pp. 268–275. Masson Dunod, Paris (1995)

  54. Robinson, C.R., Sligar, S.G.: Hydrostatic and osmotic pressure as tools to study macromolecular recognition. Methods Enzymol. 259, 395–427 (1995)

    Article  Google Scholar 

  55. Bloom, K., Yeh, E.: Tension management in the kinetochore. Curr. Biol. 20, 1040–1048 (2010)

    Article  Google Scholar 

  56. Jibu, M., Hagan, S., Hameroff, S.R., Pribram, K.H., Yasue, K.: Quantum optical coherence in cytoskeletal microtubules: implications for brain function. Biosystems 32, 195–209 (1994)

    Article  Google Scholar 

  57. Hameroff, S.R., Penrose, R. (eds.): Orchestrated reduction of quantum coherence in brain microtubules: a model for consciousness? In: Toward a Science of Consciousness—The First Tucson Discussions and Debates, pp. 507–540. Cambridge, MIT (1996)

  58. Albrecht-Buelher, G.: Cellular infrared detector appears to be contained in the centrosome. Cell Motil. Cytoskelet. 27, 262–271 (1994)

    Article  Google Scholar 

  59. Nihonyanagi, S., Yamaguchi, S., Tahara, T.: Water hydrogen bond structure near highly charged interfaces is not like ice. J. Am. Chem. Soc. 132, 6867–6869 (2010)

    Article  Google Scholar 

  60. Mentré, P.: Organization and properties of water in cell system. In: Greppin, H., Penel, C., Broughton, W.J., Strasser R. (eds.) Integrated Plant Systems, pp. 3–22. University of Geneva, Geneva (2000)

    Google Scholar 

Download references

Acknowledgement

I am very grateful towards Dr. Yolène Thomas for her encouragements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascale Mentré.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mentré, P. Water in the orchestration of the cell machinery. Some misunderstandings: a short review. J Biol Phys 38, 13–26 (2012). https://doi.org/10.1007/s10867-011-9225-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-011-9225-9

Keywords

Navigation