Skip to main content
Log in

RETRACTED ARTICLE: Nematic Ordering Pattern Formation in the Process of Self-Organization of Microtubules in a Gravitational Field

  • Research Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

This article was retracted on 01 February 2007

Abstract

Papaseit et al. (Proc. Natl. Acad. Sci. U.S.A. 97, 8364, 2000) showed the decisive role of gravity in the formation of patterns by assemblies of microtubules in vitro. By virtue of a functional scaling, the free energy for MT systems in a gravitational field was constructed. The influence of the gravitational field on MT’s self-organization process, that can lead to the isotropic to nematic phase transition, is the focus of this paper. A coupling of a concentration gradient with orientational order characteristic of nematic ordering pattern formation is the new feature emerging in the presence of gravity. The concentration range corresponding to a phase coexistence region increases with increasing g or MT concentration. Gravity facilitates the isotropic to nematic phase transition leading to a significantly broader transition region. The phase transition represents the interplay between the growth in the isotropic phase and the precipitation into the nematic phase. We also present and discuss the numerical results obtained for local MT concentration change with the height of the vessel, order parameter and phase transition properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Papaseit, C., Pochon, N., Tabony, J.: Microtubule self-organization is gravity-dependent. Proc. Natl. Acad. Sci. USA 97, 8364–8368 (2000)

    Article  ADS  Google Scholar 

  2. de Pablo, P.J., Schaap, I.A.T., MacKintosh, F.C., Schmidt, C.F.: Deformation and collapse of microtubules on the nanometer scale. Phys. Rev. Lett. 91, 098101 (2003)

    Google Scholar 

  3. Athenstaedt, H.: Pyroelectric and piezoelectric properties of vertebrates. Ann. N.Y. Acad. Sci. 238, 68–94 (1974)

    Article  ADS  Google Scholar 

  4. Margulis, L., To, L., Chase, D.: Microtubules in prokaryotes. Science 200, 1118–1124 (1978)

    Article  ADS  Google Scholar 

  5. Hameroff, S.R., Watt, R.C.: Information processing in microtubules. J. Theor. Biol. 98, 549–561 (1982)

    Article  Google Scholar 

  6. Kis, A., Kasas, S., Babic, B., Kulik, A.J., Benoît, W., Briggs, G.A.D., Schönenberger, C., Catsicas, S., Forró, L.: Nanomechanics of microtubules. Phys. Rev. Lett. 89, 248101 (2002)

    Google Scholar 

  7. Spacelab I Reports. Science 225, 205–235 (1984)

    Google Scholar 

  8. Tabony, J., Job, D.: Gravitational symmetry breaking in microtubular dissipative structures. Proc. Natl. Acad. Sci. USA 89, 6948–6952 (1992)

    Article  ADS  Google Scholar 

  9. Portet, S., Tuszyński, J.A., Dixon, J.M., Satarić, M.V.: Models of spatial and orientational self-organization of microtubules under the influence of gravitational fields. Phys. Rev. E 68, 021903 (2003)

    Google Scholar 

  10. Melton, D.A.: Pattern formation during animal development. Science 252, 234–241 (1991)

    Article  ADS  Google Scholar 

  11. Gerhart, J., Keller, R.: Region-specific cell activities in amphibian gastrulation. Annu. Rev. Cell. Biol. 2, 201–229 (1986)

    Article  Google Scholar 

  12. Zisckind, N., Elinson, R.P.: Gravity and microtubules in dorsoventral polarization of the Xenopus Egg Develop. Growth Differ. 32, 575–581 (1990)

    Article  Google Scholar 

  13. Beetschen, J.C., Gautier, J.: Heat-shock-induced grey crescent formation in axolotl eggs and oocytes: the role of gravity. Development 100, 599–609 (1987)

    Google Scholar 

  14. Malacinski, G.M., Neff, A.W.: The amphibian egg as a model system for analyzing gravity effects. Adv. Space Res. 9, 169–176 (1989)

    Article  ADS  Google Scholar 

  15. Elinson, R.P., Rowning, B.: A transient array of parallel microtubules in frog eggs: potential tracks for a cytoplasmic rotation that specifies the dorso-ventral axis. Dev. Biol. 128, 185–197 (1988)

    Article  Google Scholar 

  16. Driss-Ecole, D., Lefranc, A., Perbal, G.: A polarized cell: the root statocyte. Physiol. Plant. 118, 305–312 (2003)

    Article  Google Scholar 

  17. Himmelspach, R., Wymer, C.L., Lioyd, C.W., Nick, P.: Gravity-induced reorientation of cortical microtubules observed in vivo. Plant J. 18, 449–453 (1999)

    Article  Google Scholar 

  18. Fischer, K., Schopfer, P.: Physical strain-mediated microtubule reorientation in the epidermis of gravitropically or phototropically stimulated maize coleoptiles. Plant J. 15, 119–123 (1998)

    Article  Google Scholar 

  19. Parsons, J.D.: Nematic ordering in a system of rods. Phys. Rev. A 19, 1225–1230 (1979)

    Article  ADS  Google Scholar 

  20. de Gennes, P.: Polymer Liquid Crystals. Academic Press, New York, (1982)

    Google Scholar 

  21. Baulin, V.A., Khokhlov, A.R.: Nematic ordering of rigid rods in a gravitational field. Phys. Rev. E 60, 2973–2977 (1999)

    Article  ADS  Google Scholar 

  22. Sin-Doo, L.: A numerical investigation of nematic ordering based on a simple hard-rod model. J. Chem. Phys. 87, 4972–4974 (1987)

    Article  ADS  Google Scholar 

  23. Satarić, M.V., Tuszyński, J.A.: Relationship between the nonlinear ferroelectric and liquid crystal models for microtubules. Phys. Rev. E 67, 011901 (2003)

    Google Scholar 

  24. Tuszyński, J.A., Satarić, M.V., Portet, S., Dixon, J.M.: Gravitational symmetry breaking leads to a polar liquid crystal phase of microtubules in vitro. J. Biol. Phys. 31, 477–486 (2005)

    Article  Google Scholar 

  25. Baulin, V.A.: Self-assembled aggregates in the gravitational field: growth and nematic order. J. Chem. Phys. 119, 2874–2885 (2003)

    Article  ADS  Google Scholar 

  26. Stracke, R., Böhm, K.J., Wollweber, L., Tuszyński, J.A., Unger, E.: Analysis of the migration behaviour of single microtubules in electric fields. Biochem. Biophys. Res. Commun. 293, 602–609 (2002)

    Article  Google Scholar 

  27. Bras, W., Diakun, G.P., Diaz, J.F., Maret, G., Kramer, H., Bordas, J., Medrano, F.J.: The Susceptibility of pure tubulin to high magnetic fields: a magnetic birefringence and X-ray fiber diffraction study. Biophys. J. 74, 1509–1521 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Jian.

Additional information

This article is retracted by the authors as they have carelessly (although unintentionally) copied parts of other papers.

A retraction note to this article can be found at http://dx.doi.org/10.1007/s10867-007-9044-1

About this article

Cite this article

Jian, H., Xijun, Q. & Ruxin, L. RETRACTED ARTICLE: Nematic Ordering Pattern Formation in the Process of Self-Organization of Microtubules in a Gravitational Field. J Biol Phys 32, 497–506 (2006). https://doi.org/10.1007/s10867-006-9032-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-006-9032-x

Key words

Navigation