Skip to main content
Log in

What keeps a body moving? The brain-derived neurotrophic factor val66met polymorphism and intrinsic motivation to exercise in humans

  • Published:
Journal of Behavioral Medicine Aims and scope Submit manuscript

Abstract

Individuals who are intrinsically motivated to exercise are more likely to do so consistently. In previous research, those with at least one copy of the methionine (met) allele in the brain-derived neurotrophic factor gene (BDNF; rs6265) had greater increases in positive mood and lower perceived exertion during exercise. This study examined whether genotype for BDNF is also related to intrinsic motivation, measured by self-report during a treadmill exercise session and a free-choice behavioral measure (continuing to exercise given the option to stop) among 89 regular exercisers (age M = 23.58, SD = 3.95). Those with at least one copy of the met allele reported greater increases in intrinsic motivation during exercise and were more likely to continue exercising when given the option to stop (55 vs. 33 %). Results suggest that underlying genetic factors may partially influence perceptions of inherent rewards associated with exercise and might inform the development of individually targeted interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. We consider physical activity as a global, generic term referring to all activities that have a raised level of energy expenditure above resting metabolic rate and includes incidental activity like walking to work and occupational physical activities as well as other non-sedentary behaviors. Exercise refers to formal, purposive activities with the goal of raising energy expenditure with a particular focus on improving health-related outcomes such as cardiovascular fitness or strength. In the current article, we mainly focus on exercise as a formal, purposive activity, but recognize that the literature on genetic correlates tends to focus on overall and leisure time physical activity.

  2. Non-parametric tests were used because several of the dependent measures were not normally distributed in the current sample.

References

  • Adlard, P. A., Perreau, V. M., & Cotman, C. W. (2005). The exercise-induced expression of BDNF within the hippocampus varies across life-span. Neurobiology of Aging, 26, 511–520.

    Article  CAS  PubMed  Google Scholar 

  • Anastasia, A., Deinhardt, K., Chao, M. V., Will, N. E., Irmady, K., Lee, F. S., et al. (2013). Val66Met polymorphism of BDNF alters prodomain structure to induce neuronal growth cone retraction. Nature Communications, 4, 2490.

    Article  PubMed  Google Scholar 

  • Becker, S., & Wojtowicz, J. M. (2007). A model of hippocampal neurogenesis in memory and mood disorders. Trends in Cognitive Sciences, 11, 70–76.

    Article  PubMed  Google Scholar 

  • Blair, S. N., Haskell, W. L., Ho, P., Paffenbarger, R. S., Vranizan, K. M., Farquhar, J. W., et al. (1985). Assessment of habitual physical-activity by a 7-Day recall in a community survey and controlled experiments. American Journal of Epidemiology, 122, 794–804.

    CAS  PubMed  Google Scholar 

  • Borg, G. (1998). Borg’s perceived exertion and pain scales. Champaign, IL: Human Kinetics.

    Google Scholar 

  • Bryan, A. D., & Hutchison, K. E. (2012). The role of genomics in health behavior change: Challenges and opportunities. Public Health Genomics, 15, 139–145.

    Article  CAS  PubMed  Google Scholar 

  • Bryan, A. D., Hutchison, K. E., Seals, D. R., & Allen, D. L. (2007). A transdisciplinary model integrating genetic, physiological, and psychological correlates of voluntary exercise. Health Psychology, 26, 30–39.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bryan, A. D., Magnan, R. E., Hooper, A. E., Ciccolo, J. T., Marcus, B., & Hutchison, K. E. (2013). Colorado stride (COSTRIDE): Testing genetic and physiological moderators of response to an intervention to increase physical activity. International Journal of Behavioral Nutrition and Physical Activity, 10, 139.

    Article  PubMed Central  PubMed  Google Scholar 

  • Cameron, J., & Pierce, W. D. (1994). Reinforcement, reward, and intrinsic motivation: A meta-analysis. Review of Educational Research, 64, 363–423.

    Article  Google Scholar 

  • Carek, P. J., Laibstain, S. E., & Carek, S. M. (2011). Exercise for the treatment of depression and anxiety. International Journal of Psychiatry in Medicine, 41, 15–28.

    Article  PubMed  Google Scholar 

  • Chatzisarantis, N. L., Frederick, C., Biddle, S. J., Hagger, M. S., & Smith, B. (2007). Influences of volitional and forced intentions on physical activity and effort within the theory of planned behaviour. Journal of Sports Sciences, 25, 699–709.

    Article  PubMed  Google Scholar 

  • Chatzisarantis, N. L., & Hagger, M. S. (2009). Effects of an intervention based on self-determination theory on self-reported leisure-time physical activity participation. Psychology & Health, 24, 29–48.

    Article  Google Scholar 

  • Chen, Z. M., Simmons, M. S., Perry, R. T., Wiener, H. W., Harrell, L. E., & Go, R. C. P. (2008). Genetic association of neurotrophic tyrosine kinase receptor type 2 (NTRK2) with Alzheimer’s disease. American Journal of Medical Genetics Part B-Neuropsychiatric Genetics, 147B, 363–369.

    Article  CAS  Google Scholar 

  • Cotman, C. W., & Berchtold, N. C. (2002). Exercise: A behavioral intervention to enhance brain health and plasticity. Trends in Neurosciences, 25, 295–301.

    Article  CAS  PubMed  Google Scholar 

  • Deci, E. L. (1971). Effects of externally mediated rewards on intrinsic motivation. Journal of Personality and Social Psychology, 18, 105–115.

    Article  Google Scholar 

  • Deci, E. L., Koestner, R., & Ryan, R. M. (1999). A meta-analytic review of experiments examining the effects of extrinsic rewards on intrinsic motivation. Psychological Bulletin, 125, 627–668.

    Article  CAS  PubMed  Google Scholar 

  • Dishman, R. K., Washburn, R. A., & Schoeller, D. A. (2001). Measurement of physical activity. Quest, 53, 295–309.

    Article  Google Scholar 

  • Donovan, M. J., Lin, M. I., Wiegn, P., Ringstedt, T., Kraemer, R., Hahn, R., et al. (2000). Brain derived neurotrophic factor is an endothelial cell survival factor required for intramyocardial vessel stabilization. Development, 127, 4531–4540.

    CAS  PubMed  Google Scholar 

  • Duman, R. S., & Monteggia, L. M. (2006). A neurotrophic model for stress-related mood disorders. Biological Psychiatry, 59, 1116–1127.

    Article  CAS  PubMed  Google Scholar 

  • Duman, C. H., Schlesinger, L., Russell, D. S., & Duman, R. S. (2008). Voluntary exercise produces antidepressant and anxiolytic behavioral effects in mice. Brain Research, 1199, 148–158.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dunn, A. L., Trivedi, M. H., Kampert, J. B., Clark, C. G., & Chambliss, H. O. (2005). Exercise treatment for depression: Efficacy and dose response. American Journal of Preventive Medicine, 28, 1–8.

    Article  PubMed  Google Scholar 

  • Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A., et al. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112, 257–269.

    Article  CAS  PubMed  Google Scholar 

  • Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., et al. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences of the United States of America, 108, 3017–3022.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ferris, L. T., Williams, J. S., & Shen, C. L. (2007). The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Medicine and Science in Sports and Exercise, 39, 728–734.

    Article  CAS  PubMed  Google Scholar 

  • Field, A. (2009). Discovering statistics using SPSS (3rd ed.). London: Sage.

    Google Scholar 

  • Fortier, M. S., Sweet, S. N., O’Sullivan, T. L., & Williams, G. C. (2007). A self-determination process model of physical activity adoption in the context of a randomized controlled trial. Psychology of Sport and Exercise, 8, 741–757.

    Article  Google Scholar 

  • Frederiksen, H., & Christensen, K. (2003). The influence of genetic factors on physical functioning and exercise in second half of life. Scandinavian Journal of Medicine and Science in Sports, 13, 9–18.

    Article  CAS  PubMed  Google Scholar 

  • Freeman, B., Powell, J., Ball, D., Hill, L., Craig, I., & Plomin, R. (1997). DNA by mail: An inexpensive and noninvasive method for collecting DNA samples from widely dispersed populations. Behavior Genetics, 27, 251–257.

    Article  CAS  PubMed  Google Scholar 

  • Gatt, J. M., Nemeroff, C. B., Dobson-Stone, C., Paul, R. H., Bryant, R. A., Schofield, P. R., et al. (2009). Interactions between BDNF Val66Met polymorphism and early life stress predict brain and arousal pathways to syndromal depression and anxiety. Molecular Psychiatry, 14, 681–695.

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Pinilla, F., Ying, Z., Opazo, P., Roy, R. R., & Edgerton, V. R. (2001). Differential regulation by exercise of BDNF and NT-3 in rat spinal cord and skeletal muscle. European Journal of Neuroscience, 13, 1078–1084.

    Article  PubMed  Google Scholar 

  • Grant, S., Aitchison, T., Henderson, E., Christie, J., Zare, S., McMurray, J., et al. (1999). A comparison of the reproducibility and the sensitivity to change of visual analogue scales, Borg scales, and Likert scales in normal subjects during submaximal exercise. Chest, 116, 1208–1217.

    Article  CAS  PubMed  Google Scholar 

  • Guay, F., Vallerand, R. J., & Blanchard, C. (2000). On the assessment of situational intrinsic and extrinsic motivation: The situational motivation scale (SIMS). Motivation and Emotion, 24, 175–213.

    Article  Google Scholar 

  • Hagger, M. S., & Chatzisarantis, N. L. (2011). Causality orientations moderate the undermining effect of rewards on intrinsic motivation. Journal of Experimental Social Psychology, 47, 485–489.

    Article  Google Scholar 

  • Hagger, M. S., Keatley, D. A., Chan, D. C., Chatzisarantis, N. L., Dimmock, J. A., Jackson, B., et al. (2014). The goose is (half) cooked: A consideration of the mechanisms and interpersonal context is needed to elucidate the effects of personal financial incentives on health behaviour. International Journal of Behavioral Medicine, 21, 197–201.

    Article  PubMed  Google Scholar 

  • Hagger, M. S., Rentzelas, P., & Chatzisarantis, N. L. (in press). Effects of individualist and collectivist group norms and choice on intrinsic motivation. Motivation and Emotion.

  • Hardy, C. J., & Rejeski, W. J. (1989). Not what, but how one feels—The measurement of affect during exercise. Journal of Sport & Exercise Psychology, 11, 304–317.

    Google Scholar 

  • Hariri, A. R., Goldberg, T. E., Mattay, V. S., Kolachana, B. S., Callicott, J. H., Egan, M. F., et al. (2003). Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. The Journal of Neuroscience, 23, 6690–6694.

    CAS  PubMed  Google Scholar 

  • Hetherington, M. M., & Cecil, J. E. (2010). Gene-environment interactions in obesity. Forum of Nutrition, 63, 195–203.

    Article  CAS  PubMed  Google Scholar 

  • Heyman, E., Gamelin, F. X., Goekint, M., Piscitelli, F., Roelands, B., Leclair, E., et al. (2012). Intense exercise increases circulating endocannabinoid and BDNF levels in humans—Possible implications for reward and depression. Psychoneuroendocrinology, 37, 844–851.

    Article  CAS  PubMed  Google Scholar 

  • Hillman, C. H., Erickson, K. I., & Kramer, A. F. (2008). Be smart, exercise your heart: Exercise effects on brain and cognition. Nature Reviews Neuroscience, 9, 58–65.

    Article  CAS  PubMed  Google Scholar 

  • Huang, E. J., & Reichardt, L. F. (2001). Neurotrophins: Roles in neuronal development and function. Annual Review of Neuroscience, 24, 677–736.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Isen, A. M., & Reeve, J. (2005). The influence of positive affect on intrinsic and extrinsic motivation: Facilitating enjoyment of play, responsible work behavior, and self-control. Motivation and Emotion, 29, 297–325.

    Article  Google Scholar 

  • Jiang, R., Brummett, B. H., Babyak, M. A., Siegler, I. C., & Williams, R. B. (2013). Brain-derived neurotrophic factor (BDNF) Val66Met and adulthood chronic stress interact to affect depressive symptoms. Journal of Psychiatric Research, 47, 233–239.

    Article  PubMed Central  PubMed  Google Scholar 

  • Karege, F., Perret, G., Bondolfi, G., Schwald, M., Bertschy, G., & Aubry, J. M. (2002). Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Research, 109, 143–148.

    Article  CAS  PubMed  Google Scholar 

  • Kleim, J. A., Chan, S., Pringle, E., Schallert, K., Procaccio, V., Jimenez, R., et al. (2006). BDNF val66met polymorphism is associated with modified experience-dependent plasticity in human motor cortex. Nature Neuroscience, 9, 735–737.

    Article  CAS  PubMed  Google Scholar 

  • Kwan, B. M., & Bryan, A. D. (2010a). Affective response to exercise as a component of exercise motivation: Attitudes, norms, self-efficacy, and temporal stability of intentions. Psychology of Sport and Exercise, 11, 71–79.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kwan, B. M., & Bryan, A. D. (2010b). In-task and post-task affective response to exercise: Translating exercise intentions into behaviour. British Journal of Health Psychology, 15, 115–131.

    Article  PubMed  Google Scholar 

  • Lafenetre, P., Leske, O., Ma-Hogemeie, Z., Haghikia, A., Bichler, Z., Wahle, P., et al. (2010). Exercise can rescue recognition memory impairment in a model with reduced adult hippocampal neurogenesis. Frontiers in Behavioral Neuroscience, 3, 34.

    PubMed Central  PubMed  Google Scholar 

  • Lang, U. E., Sander, T., Lohoff, F. W., Hellweg, R., Bajbouj, M., Winterer, G., et al. (2007). Association of the met66 allele of brain-derived neurotrophic factor (BDNF) with smoking. Psychopharmacology (Berl), 190, 433–439.

    Article  CAS  Google Scholar 

  • Levinson, D. F. (2006). The genetics of depression: A review. Biological Psychiatry, 60, 84–92.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Luikart, B. W., Birnbaum, S., Chen, J., Kwon, C. H., Kernie, S. G., et al. (2008). TrkB regulates hippocampal neurogenesis and governs sensitivity to antidepressive treatment. Neuron, 59, 399–412.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lonsdale, C., Sabiston, C. M., Raedeke, T. D., Ha, A. S., & Sum, R. K. (2009). Self-determined motivation and students’ physical activity during structured physical education lessons and free choice periods. Preventive Medicine, 48, 69–73.

    Article  PubMed  Google Scholar 

  • Lox, C. L., Jackson, S., Tubolski, S. W., Wasley, D., & Treasure, D. C. (2000). Revisiting the measurement of exercise-induced feeling states: The Physical Activity Affect Scale. Measurement in Physical Education and Exercise Science, 4, 79–95.

    Article  Google Scholar 

  • Malberg, J. E., Eisch, A. J., Nestler, E. J., & Duman, R. S. (2000). Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. Journal of Neuroscience, 20, 9104–9110.

    CAS  PubMed  Google Scholar 

  • Markland, D., & Tobin, V. (2004). A modification to the behavioural regulation in exercise questionnaire to include an assessment of amotivation. Journal of Sport & Exercise Psychology, 26, 191–196.

    Google Scholar 

  • Mata, J., Thompson, R. J., & Gotlib, I. H. (2010). BDNF genotype moderates the relation between physical activity and depressive symptoms. Health Psychology, 29, 130–133.

    Article  PubMed Central  PubMed  Google Scholar 

  • McBride, C. M., Bryan, A. D., Bray, M. S., Swan, G. E., & Green, E. D. (2012). Health behavior change: Can genomics improve behavioral adherence? American Journal of Public Health, 102, 401–405.

    Article  PubMed Central  PubMed  Google Scholar 

  • Patall, E. A., Cooper, H., & Robinson, J. C. (2008). The effects of choice on intrinsic motivation and related outcomes: A meta-analysis of research findings. Psychological Bulletin, 134, 270–300.

    Article  PubMed  Google Scholar 

  • Penedo, F. J., & Dahn, J. R. (2005). Exercise and well-being: A review of mental and physical health benefits associated with physical activity. Current Opinion in Psychiatry, 18, 189–193.

    Article  PubMed  Google Scholar 

  • Pereira, M. A., FitzerGerald, S. J., Gregg, E. W., Joswiak, M. L., Ryan, W. J., Suminski, R. R., et al. (1997). A collection of physical activity questionnaires for health-related research. Medicine and Science in Sports and Exercise, 29, S1–S205.

    Article  CAS  PubMed  Google Scholar 

  • Pezawas, L., Verchinski, B. A., Mattay, V. S., Callicott, J. H., Kolachana, B. S., Straub, R. E., et al. (2004). The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. Journal of Neuroscience, 24, 10099–10102.

    Article  CAS  PubMed  Google Scholar 

  • Phares, D. A., Halverstadt, A. A., Shuldiner, A. R., Ferrell, R. E., Douglass, L. W., Ryan, A. S., et al. (2004). Association between body fat response to exercise training and multilocus ADR genotypes. Obesity Research, 12, 807–815.

    Article  CAS  PubMed  Google Scholar 

  • Rankinen, T., Roth, S. M., Bray, M. S., Loos, R., Perusse, L., Wolfarth, B., et al. (2010). Advances in exercise, fitness, and performance genomics. Medicine and Science in Sports and Exercise, 42, 835–846.

    Article  PubMed  Google Scholar 

  • Roberts, C. K., & Barnard, R. J. (2005). Effects of exercise and diet on chronic disease. Journal of Applied Physiology, 98, 3–30.

    Article  PubMed  Google Scholar 

  • Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39, 1161–1178.

    Article  Google Scholar 

  • Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55, 68–78.

    Article  CAS  PubMed  Google Scholar 

  • Ryan, R. M., & Deci, E. L. (2007). Intrinsic motivation and self-determination in exercise and sport. In M. S. Hagger & N. L. D. Chatzisarantis (Eds.), Intrinsic motivation and self-determination in exercise and sport (pp. 1–19). Champaign, IL: Human Kinetics.

    Google Scholar 

  • Ryan, R. M., Frederick, C. M., Lepes, D., Rubio, N., & Sheldon, K. M. (1997). Intrinsic motivation and exercise adherence. International Journal of Sport Psychology, 28, 335–354.

    Google Scholar 

  • Ryan, R. M., Patrick, H., Deci, E. L., & Williams, G. C. (2008). Facilitating health behaviour change and its maintenance: Interventions based on self-determination theory. The European Health Psychologist, 10, 2–5.

    Google Scholar 

  • Sahay, A., & Hen, R. (2007). Adult hippocampal neurogenesis in depression. Nature Neuroscience, 10, 1110–1115.

    Article  CAS  PubMed  Google Scholar 

  • Sallis, J. F., Haskell, W. L., Wood, P. D., Fortmann, S. P., Rogers, T., Blair, S. N., et al. (1985). Physical-activity assessment methodology in the 5-city project. American Journal of Epidemiology, 121, 91–106.

    CAS  PubMed  Google Scholar 

  • Seroogy, K. B., Lundgren, K. H., Tran, T. M., Guthrie, K. M., Isackson, P. J., & Gall, C. M. (1994). Dopaminergic neurons in rat ventral midbrain express brain-derived neurotrophic factor and neurotrophin-3 mRNAs. Journal of Comparative Neurology, 342, 321–334.

    Article  CAS  PubMed  Google Scholar 

  • Sloane, R., Snyder, D. C., Demark-Wahnefried, W., Lobach, D., & Kraus, W. E. (2009). Comparing the 7-day physical activity recall with a triaxial accelerometer for measuring time in exercise. Medicine and Science in Sports and Exercise, 41, 1334–1340.

    Article  PubMed Central  PubMed  Google Scholar 

  • Stavrakakis, N., Oldehinkel, A. J., Nederhof, E., Oudevoshaar, R. C., Verhulst, F. C., Ormel, J., et al. (2012). Plasticity genes do not modify associations between physical activity and depressive symptoms. Health Psychology.

  • Stubbe, J. H., Boomsma, D. I., Vink, J. M., Cornes, B. K., Martin, N. G., Skytthe, A., et al. (2006). Genetic influences on exercise participation in 37,051 twin pairs from seven countries. PLoS ONE, 1, e22.

    Article  PubMed Central  PubMed  Google Scholar 

  • Szeszko, P. R., Lipsky, R., Mentschel, C., Robinson, D., Gunduz-Bruce, H., Sevy, S., et al. (2005). Brain-derived neurotrophic factor val66met polymorphism and volume of the hippocampal formation. Molecular Psychiatry, 10, 631–636.

    Article  CAS  PubMed  Google Scholar 

  • Troiano, R. P., Berrigan, D., Dodd, K. W., Masse, L. C., Tilert, T., & McDowell, M. (2008). Physical activity in the United States measured by accelerometer. Medicine and Science in Sports and Exercise, 40, 181–188.

    Article  PubMed  Google Scholar 

  • Vallerand, R. J. (2004). Intrinsic and extrinsic motivation in sport. In C. D. Spielberger (Ed.), Encyclopedia of applied psychology (Vol. 2, pp. 427–435). New York: Academic Press.

    Chapter  Google Scholar 

  • Vansteenkiste, M., Simons, J., Lens, W., Sheldon, K. M., & Deci, E. L. (2004). Motivating learning, performance, and persistence: The synergistic effects of intrinsic goal contents and autonomy-supportive contexts. Journal of Personality and Social Psychology, 87, 246–260.

    Article  PubMed  Google Scholar 

  • Walker, A. H., Najarian, D., White, D. L., Jaffe, J. F., Kanetsky, P. A., & Rebbeck, T. R. (1999). Collection of genomic DNA by buccal swabs for polymerase chain reaction-based biomarker assays. Environmental Health Perspectives, 107, 517–520.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • WHO. (2008). The global burden of disease: 2004 update (p. 2008). Geneva: WHO.

    Google Scholar 

  • Williams, D. M., Dunsiger, S., Ciccolo, J. T., Lewis, B. A., Albrecht, A. E., & Marcus, B. H. (2008). Acute affective response to a moderate-intensity exercise stimulus predicts physical activity participation 6 and 12 months later. Psychology of Sport and Exercise, 9, 231–245.

    Article  PubMed Central  PubMed  Google Scholar 

  • Williams, D. M., Dunsiger, S., Jennings, E. G., & Marcus, B. H. (2012). Does affective valence during and immediately following a 10-min walk predict concurrent and future physical activity? Annals of Behavioral Medicine, 44, 43–51.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to K. Hutchison and his lab at the Mind Research Network for conducting the DNA assays. We would like to thank S. Gangestad for help with the study design, P. Hooper for input and revisions on previous versions of the manuscript, our participants, and T. Callahan, K. Wong, P. Onuska, and J. Halvaei, and the staff of New Heart for help with data collection.

Conflict of interest

Authors Ann E. Caldwell Hooper, Angela D. Bryan and Martin S. Hagger declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All procedures followed were in accordance with ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann E. Caldwell Hooper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 49 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caldwell Hooper, A.E., Bryan, A.D. & Hagger, M.S. What keeps a body moving? The brain-derived neurotrophic factor val66met polymorphism and intrinsic motivation to exercise in humans. J Behav Med 37, 1180–1192 (2014). https://doi.org/10.1007/s10865-014-9567-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10865-014-9567-4

Keywords

Navigation