Skip to main content
Log in

How uniform is the peptide plane geometry? A high-accuracy NMR study of dipolar Cα–C′/HN–N cross-correlated relaxation

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Highly precise and accurate measurements of very small NMR cross-correlated relaxation rates, namely those between protein H Ni –Ni and C αi−1 –Ci−1′ dipoles, are demonstrated with an error of 0.03 s−1 for GB3. Because the projection angles between the two dipole vectors are very close to the magic angle the rates range only from −0.2 to +0.2 s−1. Small changes of the average vector orientations have a dramatic impact on the relative values. The rates suggest deviation from idealized peptide plane geometry caused by twists around the C′–N bonds and/or pyramidalization of the nitrogen atoms. A clear alternating pattern along the sequence is observed in β strands 1, 3 and 4 of GB3, where the side chains of almost all residues with large positive rates are solvent exposed. In the α helix all rates are relatively large and positive. Some of the currently most accurate structures of GB3 determined by both high resolution X-ray crystallography and NMR are in satisfactory agreement with the experimental rates in the helix and β strand 3, but not in the loops and the two central strands of the sheet for which no alternating pattern is predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bouvignies G, Bernado P, Meier S, Cho K, Grzesiek S, Bruschweiler R, Blackledge M (2005) Identification of slow correlated motions in proteins using residual dipolar and hydrogen-bond scalar couplings. Proc Natl Acad Sci USA 102:13885–13890

    Article  ADS  Google Scholar 

  • Bradley P, Misura KMS, Baker D (2005) Toward high-resolution de novo structure prediction for small proteins. Science 309:1868–1871

    Article  ADS  Google Scholar 

  • Branden C, Tooze J (1999) Introduction to protein structure. Garland, New York

    Google Scholar 

  • Bremi T, Brüschweiler R (1997) Locally anisotropic internal polypeptide backbone dynamics by NMR relaxation. J Am Chem Soc 119:6672–6673

    Article  Google Scholar 

  • Bremi T, Brüschweiler R, Ernst RR (1997) A protocol for the interpretation of side-chain dynamics based on NMR relaxation: application to phenylalanines of antamanide. J Am Chem Soc 119:4272–4284

    Article  Google Scholar 

  • Brunger AT (1993) XPLOR: a system for X-ray crystallography and NMR. Yale University Press, New Haven

    Google Scholar 

  • Brutscher B, Skrynnikov NR, Bremi T, Brüschweiler R, Ernst RR (1998) Quantitative investigation of dipole-CSA cross-correlated relaxation by ZQ/DQ spectroscopy. J Magn Reson 130:346–351

    Article  ADS  Google Scholar 

  • Bytchenkoff D, Pelupessy P, Bodenhausen G (2005) Anisotropic local motions and location of amide protons in proteins. J Am Chem Soc 127:5180–5185

    Article  Google Scholar 

  • Carlomagno T, Griesinger C (2000) Errors in the measurement of cross-correlated relaxation rates and how to avoid them. J Magn Reson 144:280–287

    Article  ADS  Google Scholar 

  • Carlomagno T, Maurer M, Hennig M, Griesinger C (2000) Ubiquitin backbone motion studied via NHN–C′Cα dipolar-dipolar and C′–C′Cα/NHN CSA-dipolar cross-correlated relaxation. J Am Chem Soc 122:5105–5113

    Article  Google Scholar 

  • Carlomagno T, Bermel W, Griesinger C (2003) Measuring the χ1 torsion angle in protein by CH–CH cross-correlated relaxation: a new resolution-optimised experiment. J Biomol NMR 27:151–157

    Article  Google Scholar 

  • Case DA (1999) Calculations of NMR dipolar coupling strengths in model peptides. J Biomol NMR 15:95–102

    Article  Google Scholar 

  • Chiarparin E, Pelupessy P, Ghose R, Bodenhausen G (1999) Relaxation of two-spin coherence due to cross-correlated fluctuations of dipole-dipole couplings and anisotropic shifts in NMR of N15, C13-labeled biomolecules. J Am Chem Soc 121:6876–6883

    Article  Google Scholar 

  • Clore GM, Schwieters CD (2006) Concordance of residual dipolar couplings, backbone order parameters and crystallographic B-factors for a small alpha/beta protein: a unified picture of high probability, fast atomic motions in proteins. J Mol Biol 355:879–886

    Article  Google Scholar 

  • Corey RB, Pauling L (1953) Fundamental dimensions of polypeptide chains. Proc R Soc Lond B 141:10–20

    Article  ADS  Google Scholar 

  • Daragan VA, Mayo KH (1997) Motional model analyses of protein and peptide dynamics using 13C and 15N NMR relaxation. Prog Nucl Magn Reson Spectrosc 31:63–105

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Derrick JP, Wigley DB (1994) The third IgG-binding domain from streptococcal protein G. An analysis by X-ray crystallography of the structure alone and in a complex with Fab. J Mol Biol 243:906–918

    Article  Google Scholar 

  • Deschamps M, Bodenhausen G (2001) Anisotropy of rotational diffusion, dipole-dipole cross-correlated NMR relaxation and angles between bond vectors in proteins. ChemPhysChem 2:539–543

    Article  Google Scholar 

  • Dunitz JD, Winkler FK (1975) Amide group deformation in medium rings lactams. Acta Cryst B31:251–263

    Google Scholar 

  • Edison AS, Markley JL, Weinhold F (1994) Calculations of one-, two- and three-bond nuclear spin-spin couplings in a model peptide and correlations with experimental data. J Biomol NMR 4:519–542

    Article  Google Scholar 

  • Eisenberg D (2003) The discovery of the α-helix and β-sheet, the principal structural features of proteins. Proc Natl Acad Sci USA 100:11207–11210

    Article  ADS  Google Scholar 

  • Engh RA, Huber R (1991) Accurate bond and angle parameters for X-ray protein structure refinement. Acta Crystallog Sec A 47:392–400

    Article  Google Scholar 

  • Favro LD (1960) Theory of the rotational brownian motion of a free rigid body. Phys Rev 119:53–62

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Fersht AR (1998) Structure and Mechanism in protein science. W.H. Freeman, New York

    Google Scholar 

  • Früh D, Chiarparin E, Pelupessy P, Bodenhausen G (2002) Measurement of long-range cross-correlation rates using a combination of single- and multiple-quantum NMR spectroscopy in one experiment. J Am Chem Soc 124:4050–4057

    Article  Google Scholar 

  • Geen H, Freeman R (1991) Band-selective radiofrequency pulses. J Magn Reson 93:93–141

    Google Scholar 

  • Goldman MJ (1984) Interference effects in the relaxation of a pair of unlike spin-1/2 nuclei. J Magn Reson 60:437–452

    Google Scholar 

  • Gronenborn AM, Filpula DR, Essig NZ, Achari A, Whitlow M, Wingfield PT, Clore GM (1991) A novel, highly stable fold of the immunoglobulin binding domain of streptococcal protein G. Science 253:657–661

    Article  ADS  Google Scholar 

  • Güntert P, Mumenthaler C, Wüthrich K (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol 273:283–298

    Article  Google Scholar 

  • Hall JB, Fushman D (2003) Characterization of the overall and local dynamics of a protein with intermediate rotational anisotropy: differentiating between conformational exchange and anisotropic diffusion in the B3 domain of protein G. J Biomol NMR 27:261–275

    Article  Google Scholar 

  • Head-Gordon T, Head-Gordon M, Frisch MJ, Brooks CL, Pople JA (1991) Theoretical study of blocked glycine and alanine peptide analogues. J Am Chem Soc 113:5989–5997

    Article  Google Scholar 

  • Hu JS, Bax A (1996) Measurement of three-bond 13C–13C J couplings between carbonyl and carbonyl/carboxyl carbons in isotopically enriched proteins. J Am Chem Soc 118:8170–8171

    Article  Google Scholar 

  • Hu JS, Bax A (1997) Measurement of three-bond, 13C’–13C beta J couplings in human ubiquitin by a triple resonance, E. COSY-type NMR technique. J Am Chem Soc 119:6360–6368

    Article  Google Scholar 

  • Kay LE, Keifer P, Saarinen T (1992) Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J Am Chem Soc 114:10663–10665

    Article  Google Scholar 

  • Kloiber K, Schuler W, Konrat R (2002) Automated NMR determination of protein backbone dihedral angles from cross-correlated spin relaxation. J Biomol NMR 22:349–363

    Article  Google Scholar 

  • Koradi R, Billeter M, Wüthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graphics 14:51–55

    Article  Google Scholar 

  • Kumar A, Grace CRR, Madhu PK (2000) Cross-correlations in NMR. Prog Nucl Magn Reson Spectrosc 37:191–319

    Article  Google Scholar 

  • Lakomek NA, Fares C, Becker S, Carlomagno T, Meiler J, Griesinger C (2005) Side-chain orientation and hydrogen-bonding imprint supra-τc motion on the protein backbone of ubiquitin. Angew Chem Int Ed 44:7776–7778

    Article  Google Scholar 

  • MacArthur MW, Thornton JM (1996) Deviations from planarity of the peptide bond in peptides and proteins. J Mol Biol 264:1180–1195

    Article  Google Scholar 

  • Marion D, Ikura M, Tschudin R, Bax A (1989) Rapid recording of 2D NMR spectra without phase cycling: application to the study of hydrogen exchange in proteins. J Magn Reson 85:393–399

    Google Scholar 

  • Meiler J, Prompers JJ, Peti W, Griesinger C, Brüschweiler R (2001) Model-free approach to the dynamic interpretation of residual dipolar couplings in globular proteins. J Am Chem Soc 123:6098–6107

    Article  Google Scholar 

  • Pauling L, Corey RB (1951) The pleated sheet, a new layer configuration of polypeptide chains. Proc Natl Acad Sci USA 37:251–256

    Article  ADS  Google Scholar 

  • Pauling L, Corey RB, Branson HR (1951) The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. Proc Natl Acad Sci USA 37:205–211

    Article  ADS  Google Scholar 

  • Pelupessy P, Chiarparin E, Ghose R, Bodenhausen G (1999a) Efficient determination of angles subtended by Cα–Hα and N–HN vectors in proteins via dipole-dipole cross-correlation. J Biomol NMR 13:375–380

    Article  Google Scholar 

  • Pelupessy P, Chiarparin E, Ghose R, Bodenhausen G (1999b) Simultaneous determination of Ψ and Φ angles in proteins from measurements of cross-correlated relaxation effects. J Biomol NMR 14:277–280

    Article  Google Scholar 

  • Pelupessy P, Ravindranathan S, Bodenhausen GJ (2003) Correlated motions of successive amide N–H bonds in proteins. J Biomol NMR 25:265–280

    Article  Google Scholar 

  • Perez C, Löhr F, Rüterjans H, Schmidt JM (2001) Self-consistent Karplus parametrization of 3J couplings depending on the polypeptide side-chain torsion χ1. J Am Chem Soc 123:7081–7093

    Article  Google Scholar 

  • Peti W, Meiler J, Brüschweiler R, Griesinger C (2002) Model-free analysis of protein backbone motion from residual dipolar couplings. J Am Chem Soc 124:5822–5833

    Article  Google Scholar 

  • Reif B, Hennig M, Griesinger C (1997) Direct measurement of angles between bond vectors in high-resolution NMR. Science 276:1230–1233

    Article  Google Scholar 

  • Reif B, Diener A, Hennig M, Maurer M, Griesinger C (2000) Cross-correlated relaxation for the measurement of angles between tensorial interactions. J Magn Reson 143:45–68

    Article  ADS  Google Scholar 

  • Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160:65–73

    Article  ADS  Google Scholar 

  • Schwieters CD, Kuszewski JJ, Clore GM (2006) Using XPLOR-NIH for NMR molecular structure determination. Prog Nucl Magn Reson Spectrosc 48:47–62

    Article  Google Scholar 

  • Shaka AJ, Keeler J, Frenkiel T, Freeman R (1983) An improved sequence for broad-band decoupling–WALTZ-16. J Magn Reson 52:335–338

    Google Scholar 

  • Shaka AJ, Barker PB, Freeman R (1985) Computer-optimized decoupling scheme for wideband applications and low-level operations. J Magn Reson 64:547–552

    Google Scholar 

  • Skrynnikov NR, Konrat R, Muhandiram DR, Kay LE (2000) Relative orientation of peptide planes in proteins is reflected in carbonyl-carbonyl chemical shift anisotropy cross-correlated spin relaxation. J Am Chem Soc 122:7059–7071

    Article  Google Scholar 

  • Sprangers R, Bottomley MJ, Linge JP, Schultz J, Nilges M, Sattler M (2000) Refinement of the protein backbone angle Ψ in NMR structure calculations. J Biomol NMR 16:47–58

    Article  Google Scholar 

  • Sulzbach HM, Schleyer PvR, Schaefer HF (1995) Influence of the nonplanarity of the amide moiety on computed chemical shifts in peptide analogs. Is the amide nitrogen pyramidal? J Am Chem Soc 117:2632–2637

    Article  Google Scholar 

  • Takahashi H, Shimada I (2007) Pairwise NMR experiments for the determination of protein backbone dihedral angle Φ based on cross-correlated spin relaxation. J Biomol NMR 37:179–185

    Article  Google Scholar 

  • Tjandra N, Bax A (1997) Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278:1111–1114

    Article  ADS  Google Scholar 

  • Tolman JR (2002) A novel approach to the retrieval of structural and dynamic information from residual dipolar couplings using several oriented media in biomolecular NMR spectroscopy. J Am Chem Soc 12:12020–12030

    Article  Google Scholar 

  • Tolman JR, Al-Hashimi HM, Kay LE, Prestegard JH (2001) Structural and dynamic analysis of residual dipolar coupling data for proteins. J Am Chem Soc 123:1416–1424

    Article  Google Scholar 

  • Ulmer TS, Ramirez BE, Delaglio F, Bax A (2003) Evaluation of backbone proton positions and dynamics in a small protein by liquid crystal NMR spectroscopy. J Am Chem Soc 125:9179–9191

    Article  Google Scholar 

  • Vögeli B (2010) Comprehensive description of NMR cross-correlated relaxation under anisotropic molecular tumbling and correlated local dynamics on all time scales. J Chem Phys 133: 014501-1-13

    Google Scholar 

  • Vögeli B, Pervushin K (2002) TROSY experiment for refinement of backbone Ψ and Φ by simultaneous measurements of cross-correlated relaxation rates and 3, 4JHαHN coupling constants. J Biomol NMR 24:291–300

    Article  Google Scholar 

  • Vögeli B, Riek R (2010) Side chain-backbone projections in aromatic and ASX residues from NMR cross-correlated relaxation. J Biomol NMR 46:135–147

    Article  Google Scholar 

  • Vögeli B, Yao LS (2009) Correlated dynamics between protein HN and HC bonds observed by NMR cross relaxation. J Am Chem Soc 131:3668–3678

    Article  Google Scholar 

  • Vögeli B, Ying JF, Grishaev A, Bax A (2007) Limits on variations in protein backbone dynamics from precise measurements of scalar couplings. J Am Chem Soc 129:9377–9385

    Article  Google Scholar 

  • Vögeli B, Yao LS, Bax A (2008) Protein backbone motions viewed by intraresidue and sequential HN–Hα residual dipolar couplings. J Biomol NMR 41:17–28

    Article  Google Scholar 

  • Vugmeyster L, Pelupessy P, Vugmeister BE, Abergel D, Bodenhausen G (2004) Cross-correlated relaxation in NMR of macromolecules in the presence of fast and slow internal dynamics. CR Physique 5:377–386

    Article  ADS  Google Scholar 

  • Whitford D (2005) Proteins: structure and function. Wiley, Chichester

    Google Scholar 

  • Winkler FK, Dunitz JD (1971) The non-planar amide group. J Mol Biol 59:169–182

    Article  Google Scholar 

  • Wüthrich K (1986) NMR od proteins and nucleic acids. Wiley, New York

    Google Scholar 

  • Yang DW, Kay LE (1998) Determination of the protein backbone dihedral angle ψ from a combination of NMR-derived cross-correlation spin relaxation rates. J Am Chem Soc 120:9880–9887

    Article  Google Scholar 

  • Yang DW, Konrat R, Kay LE (1997) A multidimensional NMR experiment for measurement of the protein dihedral angle Ψ based on cross-correlated relaxation between 1Hα-13Cα dipolar and 13C′ chemical shift anisotropy mechanisms. J Am Chem Soc 119:11938–11940

    Article  Google Scholar 

  • Yang DW, Gardner KH, Kay LE (1998) A sensitive pulse scheme for measuring the backbone dihedral angle Ψ based on cross-correlation between 1Hα13Cα dipolar and 13C′ chemical shift anisotropy relaxation interactions J. Biomol. NMR 11:213–220

    Article  Google Scholar 

  • Yao L, Vögeli B, Torchia DA, Bax A (2008a) Simultaneous NMR study of protein structure and dynamics using conservative mutagenesis. J Phys Chem B 112:6045–6056

    Article  Google Scholar 

  • Yao LS, Vögeli B, Ying JF, Bax A (2008b) NMR determination of amide N–H equilibrium bond length from concerted dipolar coupling measurements. J Am Chem Soc 130:16518–16520

    Article  Google Scholar 

Download references

Acknowledgments

Dr. Roland Riek is thanked for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beat Vögeli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10858_2011_9519_MOESM1_ESM.pdf

Figures showing correlation plots between experimental and predicted CCR rates for various data sets, models and structures; figure showing deviations of predicted from experimental CCR rates; tables showing comparisons between Cα–C′–N and C′–N–HN projection angles and Cα–C′–N–HN dihedral angles of different structures; tables showing comparisons between predicted CCR rates of different structures under isotropic molecular tumbling; table listing experimental CCR rates and errors obtained from the ACE and MMQ approaches and their average, and predicted CCR rates on the basis of different structures; table listing rms deviations, slopes and correlation coefficients between experimental and predicted CCR rates for several data sets, models and structures (PDF 1072 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vögeli, B. How uniform is the peptide plane geometry? A high-accuracy NMR study of dipolar Cα–C′/HN–N cross-correlated relaxation. J Biomol NMR 50, 315–329 (2011). https://doi.org/10.1007/s10858-011-9519-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-011-9519-z

Keywords

Navigation