Skip to main content

Advertisement

Log in

Biological characterization of a new silicon based coating developed for dental implants

  • Biocompatibility Studies
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Taking into account the influence of Si in osteoblast cell proliferation, a series of sol–gel derived silicon based coating was prepared by controlling the process parameters and varying the different Si-alkoxide precursors molar rate in order to obtain materials able to release Si compounds. For this purpose, methyltrimethoxysilane (MTMOS) and tetraethyl orthosilicate (TEOS) were hydrolysed together and the sol obtained was used to dip-coat the different substrates. The silicon release ability of the coatings was tested finding that it was dependent on the TEOS precursor content, reaching a Si amount value around ninefolds higher for coatings with TEOS than for the pure MTMOS material. To test the effect of this released Si, the in vitro performance of developed coatings was tested with human adipose mesenchymal stem cells finding a significantly higher proliferation and mineralization on the coating with the higher TEOS content. For in vivo evaluation of the biocompatibility, coated implants were placed in the tibia of the rabbit and a histological analysis was performed. The evaluation of parameters such as the bone marrow state, the presence of giant cells and the fibrous capsule proved the biocompatibility of the developed coatings. Furthermore, coated implants seemed to produce a qualitatively higher osteoblastic activity and a higher number of bone spicules than the control (uncoated commercial SLA titanium dental implant).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Elias CN, Meyers MA, Valiev RZ, et al. Ultrafine grained titanium for biomedical applications: an overview of performance. J Mater Res Technol. 2013;2:340–50.

    Article  Google Scholar 

  2. Branemark P. Osseointegration and its experimental background. J Prosthet Dent. 1983;50:399–410.

    Article  Google Scholar 

  3. Areva S, Ääritalo V, Tuusa S, et al. Sol-gel-derived TiO2–SiO2 implant coatings for direct tissue attachment. Part II: evaluation of cell response. J Mater Sci Mater Med. 2007;18:1633–42.

    Article  Google Scholar 

  4. Morra M. Biochemical modification of titanium surfaces: peptides and ECM proteins. Eur Cell Mater. 2006;12:1–15.

    Google Scholar 

  5. Le Guéhennec L, Soueidan A, Layrolle P, et al. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007;23:844–54.

    Article  Google Scholar 

  6. Elias CN, Oshida Y, Lima JHC, et al. Relationship between surface properties (roughness, wettability and morphology) of titanium and dental implant removal torque. J Mech Behav Biomed Mater. 2008;1:234–42.

    Article  Google Scholar 

  7. Abraham C. A brief historical perspective on dental implants, their surface coatings and treatments. Open Dent J. 2014;8:50–5.

    Article  Google Scholar 

  8. Shirosaki Y, Tsuru K, Hayakawa S, et al. Effects of Si(IV) released from chitosan-silicate hybrids on proliferation and differentiation of MG63 osteoblast cells. Bioceram Dev Appl. 2011;1:1–4.

    Article  Google Scholar 

  9. Browne M, Gregson P. Effect of mechanical surface pretreatment on metal ion release. Biomaterials. 2000;21:385–92.

    Article  Google Scholar 

  10. Anil S, Alghamdi H, Jansen J, et al. Dental implant surface enhancement and osseointegration. INTECH Open Access Publ. 2011. doi:10.5772/16475.

    Google Scholar 

  11. Aparicio C, Gil FJ, Fonseca C, et al. Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applications. Biomaterials. 2003;24:263–73.

    Article  Google Scholar 

  12. Yokoyama K, Ichikawa T, Murakami H, et al. Fracture mechanisms of retrieved titanium screw thread in dental implant. Biomaterials. 2002;23:2459–65.

    Article  Google Scholar 

  13. Coelho PG, Granjeiro JM, Romanos GE, et al. Basic research methods and current trends of dental implant surfaces. J Biomed Mater Res B. 2009;88:579–96.

    Article  Google Scholar 

  14. Subramani K, Mathew RT. Chapter 6—titanium surface modification techniques for dental implants—from microscale to nanoscale. In: Subramani K, Ahmed W, editors. Emerging nanotechnologies in dentistry. Boston: William Andrew Publishing; 2012. p. 85–102.

    Chapter  Google Scholar 

  15. Collinson MM. Recent trends in analytical applications of organically modified silicate materials. Trends Anal Chem. 2002;21:31–9.

    Article  Google Scholar 

  16. Milea CA, Bogatu C, Duta A. The influence of parameters in silica sol-gel process. Bull Transilv Univ Braşov. 2011;4:59–66.

    Google Scholar 

  17. Hench LL. Chronology of bioactive glass development and clinical applications. New J Glass Ceram. 2013;3:67–73.

    Article  Google Scholar 

  18. Reffitt D, Ogston N, Jugdaohsingh R, et al. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone. 2003;32:127–35.

    Article  Google Scholar 

  19. Qiu Z, Noh I, Zhang S. Silicate-doped hydroxyapatite and its promotive effect on bone mineralization. Front Mater Sci. 2013;7:40–50.

    Article  Google Scholar 

  20. Juan-Díaz MJ, Martínez-Ibáñez M, Hernández-Escolano M, et al. Study of the degradation of hybrid sol–gel coatings in aqueous medium. Prog Org Coat. 2014;77:1799–806.

    Article  Google Scholar 

  21. Mori H, Manabe M, Kurachi Y, et al. Osseointegration of dental implants in rabbit bone with low mineral density. J Oral Maxillofac Surg. 1997;55:351–61.

    Article  Google Scholar 

  22. AENOR. Biological evaluation of medical devices. Part 6: tests for local effects after implantation (UNE-EN ISO 10993-6:2009) [Internet]. [cited 2014 Jul 1]. http://www.aenor.es/aenor/normas/normas/fichanorma.asp?tipo=N&codigo=N0043900&pdf=#.U7L6eLHBfMU.

  23. Naito Y, Jimbo R, Bryington MS, et al. The influence of 1α. 25-dihydroxyvitamin D3 coating on implant osseointegration in the rabbit tibia. J Oral Maxillofac Res. 2014;5:e3.

    Google Scholar 

  24. Breding K, Jimbo R, Hayashi M, et al. The effect of hydroxyapatite nanocrystals on osseointegration of titanium implants: an in vivo rabbit study. Int J Dent. 2014;2014:171305.

    Article  Google Scholar 

  25. Clark PA, Rodriguez A, Sumner DR, et al. Modulation of bone ingrowth of rabbit femur titanium implants by in vivo axial micromechanical loading. J Appl Physiol. 2005;98:1922–9.

    Article  Google Scholar 

  26. Peris JL, Prat J, Comin M, et al. Técnica histológica para la inclusión en metil-metacrilato de muestras óseas no descalcificadas. Rev Esp Cir Osteoart. 1993;28:231–8.

    Google Scholar 

  27. Sastre R, San Román J, de Aza S. Biomateriales. Ibérica: Faenza Editrice Ibérica; 2004.

    Google Scholar 

  28. Wierzchos J, Falcioni T, Kiciak A, et al. Advances in the ultrastructural study of the implant–bone interface by backscattered electron imaging. Micron. 2008;39:1363–70.

    Article  Google Scholar 

  29. Rodrigues AI, Oliveira MB, Mano JF, et al. Combinatorial effect of silicon and calcium release from starch-based scaffolds on osteogenic differentiation of human adipose stem cells. ACS Biomater Sci Eng. 2015;1(9):760–70.

    Article  Google Scholar 

  30. Wiens M, Wang X, Schröder HC, et al. The role of biosilica in the osteoprotegerin/RANKL ratio in human osteoblast-like cells. Biomaterials. 2010;31:7716–25.

    Article  Google Scholar 

  31. Meretoja V, Tirri T, Areva S, et al. Development of a low temperature sol-gel-derived titania-silica implant coating. Mater Sci Appl. 2010;1:118.

    Google Scholar 

  32. Tsuru K, Robertson Z, Annaz B, et al. Sol-gel synthesis and in vitro cell compatibility analysis of silicate-containing biodegradable hybrid gels. Key Eng Mater. 2008;361:447–50.

    Article  Google Scholar 

  33. Yan S, Yin J, Cui L, et al. Apatite-forming ability of bioactive poly(l-lactic acid)/grafted silica nanocomposites in simulated body fluid. Colloids Surf B. 2011;86:218–24.

    Article  Google Scholar 

  34. Zolkov C, Avnir D, Armon R. Tissue-derived cell growth on hybrid sol–gel films. J Mater Chem. 2004;14:2200–5.

    Article  Google Scholar 

  35. Gittens RA, Scheideler L, Rupp F, et al. A review on the wettability of dental implant surfaces II: biological and clinical aspects. Acta Biomater. 2014;10:2907–18.

    Article  Google Scholar 

  36. Chatzistavrou X, Kontonasaki E, Paraskevopoulos KM, et al. Sol-gel derived bioactive glass ceramics for dental applications. In: Vallittu P, editor. Non-metallic biomaterials for tooth repair and replacement. New York: Woodhead Publishing; 2013. p. 194–231.

    Chapter  Google Scholar 

  37. Kim E, Bu S, Sung M, et al. Effects of silicon on osteoblast activity and bone mineralization of MC3T3-E1 cells. Biol Trace Elem Res. 2013;152:105–12.

    Article  Google Scholar 

  38. Gough JE, Jones JR, Hench LL. Nodule formation and mineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold. Biomaterials. 2004;25:2039–46.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Vicente Ferrer from the University of Murcia for the surgery of the rabbits, and to Dr. Antonio López Bravo for his precious help in the histological study. The research Project has been supported by the Ministerio de Economía y Competitividad (Govern of Spain) and FEDER through Subprograma INNPACTO: BACDENT(IPT-2012-0218-090000), and University of the Basque Country (UFI 11/56; IT 611-13). The Basque Government awarded with a Grant to María Martínez.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Goñi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Ibáñez, M., Juan-Díaz, M.J., Lara-Saez, I. et al. Biological characterization of a new silicon based coating developed for dental implants. J Mater Sci: Mater Med 27, 80 (2016). https://doi.org/10.1007/s10856-016-5690-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-016-5690-9

Keywords

Navigation