Skip to main content

Advertisement

Log in

In vitro biocompatibility assessment of Ti40Cu38Zr10Pd12 bulk metallic glass

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The use of biocompatible materials has attained an increasing importance for tissue regeneration and transplantation. The excellent mechanical and corrosion properties of Ti40Cu38Zr10Pd12 bulk metallic glass (BMG) turn it into a potential candidate for its use in orthopaedic implants. Before being considered as a biomaterial, some biological parameters must be taken into account. In this study, mouse preosteoblasts were cultured in the presence or absence of the alloy at different times (24 h, 7 and 21 days) and no differences in cell viability were detected. Moreover, cells were able to adhere to the alloy surface by establishing focal contacts, and displayed a flattened polygonal morphology. After 14 days in culture, differentiation into osteoblasts was observed. Besides, the amount of Cu ions released and their potential toxic effects were analyzed, showing that the amount of Cu released did not increase cell death. Finally, the low levels of inflammatory cytokines secreted by THP-1 differentiated macrophages exposed to the alloy suggest the absence of an immunogenic response to the alloy. In conclusion, in vitro studies indicate that the Ti40Cu38Zr10Pd12 BMG could be considered as a biomaterial to be used in orthopaedic implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci. 2009;54:397–425.

    Article  Google Scholar 

  2. Ashby MF, Greer AL. Metallic glasses as structural materials. Scr Mater. 2006;54:321–6.

    Article  Google Scholar 

  3. Chang H, Wang Y. Cell responses to surface and architecture of tissue engineering scaffolds. In: Eberli D, editor. Regenerative medicine and tissue engineering—cells and biomaterials. Rijeka: InTech; 2011. p. 569–88.

    Google Scholar 

  4. Wataha JC, Hanks CT, Sun Z. Effect of cell line on in vitro metal ion cytotoxicity. Dent Mater. 1994;10:156–61.

    Article  Google Scholar 

  5. Yamamoto A, Honma R, Sumita M. Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells. J Biomed Mater Res. 1998;39:331–40.

    Article  Google Scholar 

  6. Percy ME, Kruck TPA, Pogue AI, Lukiw WJ. Towards the prevention of potential aluminum toxic effects and an effective treatment for Alzheimer’s disease. J Inorg Biochem. 2011;105:1505–12.

    Article  Google Scholar 

  7. Pizzoferrato A, Cenni E, Ciapetti G, Granchi D, Savarino L, Stea S. Inflammatory response to metals and ceramics. In: Barbucci R, editor. Integrated biomaterials science. New York: Kluwer Academic Publisher; 2002. p. 735–91.

    Chapter  Google Scholar 

  8. Prigent H, Pellen-Mussi P, Cathelineau G, Bonnaure-Mallet M. Evaluation of the biocompatibility of titanium–tantalum alloy versus titanium. J Biomed Mater Res. 1998;39:200–6.

    Article  Google Scholar 

  9. Yamazaki T, Yamazaki A, Hibino Y, Chowdhury SA, Yokote Y, Kanda Y, Kunii S, Sakagami H, Nakajima H, Shimada J. Biological impact of contact with metals on cells. In Vivo. 2006;20:605–11.

    Google Scholar 

  10. Thyssen JP. Metal allergy: a review on exposures, penetration, genetics, prevalence, and clinical implications. Chem Res Toxicol. 2009;23:309.

    Article  Google Scholar 

  11. Bacakova L, Filova E, Parizek M, Ruml T, Svorcik V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol Adv. 2011;29:739–67.

    Article  Google Scholar 

  12. Popp JR, Laflin KE, Love BJ, Goldstein AS. In vitro evaluation of osteoblastic differentiation on amorphous calcium phosphate-decorated poly(lactic-co-glycolic acid) scaffolds. J Tissue Eng Regen Med. 2011;5:780–9.

    Article  Google Scholar 

  13. Nakashima Y, Sun DH, Trindade MC, Maloney WJ, Goodman SB, Schurman DJ, Smith RL. Signaling pathways for tumor necrosis factor-alpha and interleukin-6 expression in human macrophages exposed to titanium-alloy particulate debris in vitro. J Bone Joint Surg Am. 1999;81:603–15.

    Article  Google Scholar 

  14. Vallés G, González-Melendi P, González-Carrasco JL, Saldaña L, Sánchez-Sabaté E, Munuera L, Vilaboa N. Differential inflammatory macrophage response to rutile and titanium particles. Biomaterials. 2006;27:5199–211.

    Article  Google Scholar 

  15. Wataha JC, Lewis JB, Volkmann KR, Lockwood PE, Messer RLW, Bouillaguet S. Sublethal concentrations of Au(III), Pd (II), and Ni(II) differentially alter inflammatory cytokine secretion from activated monocytes. J Biomed Mater Res B. 2004;69B:11–7.

    Article  Google Scholar 

  16. McGinley EL, Fleming GJ, Moran GP. Development of a discriminatory biocompatibility testing model for non-precious dental casting alloys. Dent Mater. 2011;27:1295–306.

    Article  Google Scholar 

  17. Li L, Wataha JC, Cate C, Zhang H, DiJulio D, Chung WO. Ni(II) alters the NFkB signaling pathway in monocytic cells. J Biomed Mater Res B. 2012;100B:934–9.

    Article  Google Scholar 

  18. Huang L, Cao Z, Meyer HM, Liaw PK, Garlea E, Dunlap JR, Zhang T, He W. Responses of bone-forming cells on pre-immersed Zr-based bulk metallic glasses: effects of composition and roughness. Acta Biomater. 2011;7:395–405.

    Article  Google Scholar 

  19. Wang YB, Zheng YF, Wei SC, Li M. In vitro study on Zr-based bulk metallic glasses as potential biomaterials. J Biomed Mater Res B. 2011;96B:34–46.

    Article  Google Scholar 

  20. Gu X, Zheng Y, Zhong S, Xi T, Wang J, Wang W. Corrosion of, and cellular responses to Mg–Zn–Ca bulk metallic glasses. Biomaterials. 2010;31:1093–103.

    Article  Google Scholar 

  21. González S, Pellicer E, Fornell J, Blanquer A, Barrios L, Ibáñez E, Solsona P, Suriñach S, Baró MD, Nogués C, Sort J. Improved mechanical performance and delayed corrosion phenomena in biodegradable Mg–Zn–Ca alloys through Pd-alloying. J Mech Behav Biomed Mater. 2012;6:53–62.

    Article  Google Scholar 

  22. Pellicer E, González S, Blanquer A, Suriñach S, Baró MD, Barrios L, Ibáñez E, Nogués C, Sort J. On the biodegradability, mechanical behavior, and cytocompatibility of amorphous Mg72Zn23Ca5 and crystalline Mg70Zn23Ca5Pd2 alloys as temporary implant materials. J Biomed Mater Res A. 2013;101:502–17.

    Article  Google Scholar 

  23. Shimojo N, Kondo C, Yamashita K, Hoshino T, Hayakawa T. Cytotoxicity analysis of a novel titanium alloy in vitro: adhesion, spreading, and proliferation of human gingival fibroblasts. Biomed Mater Eng. 2007;17:127–35.

    Google Scholar 

  24. Oak JJ. Characterization of surface properties, osteoblast cell culture in vitro and processing with flow-viscosity of Ni-free Ti-based bulk metallic glass for biomaterials. J Biomech Sci Eng. 2009;4:384.

    Article  Google Scholar 

  25. Fornell J, Van Steenberge N, Varea A, Rossinyol E, Pellicer E, Suriñach S, Baró MD, Sort J. Enhanced mechanical properties and in vitro corrosion behavior of amorphous and devitrified Ti40Zr10Cu38Pd12 metallic glass. J Mech Behav Biomed Mater. 2011;4:1709–17.

    Article  Google Scholar 

  26. Morita A, Fukui H, Tadano H, Hayashi S, Hasegawa J, Niinomi M. Alloying titanium and tantalum by cold crucible levitation melting (CCLM) furnace. Mater Sci Eng, A. 2000;280:208–13.

    Article  Google Scholar 

  27. Finke B, Luethen F, Schroeder K, Mueller PD, Bergemann C, Frant M, Ohl A, Nebe BJ. The effect of positively charged plasma polymerization on initial osteoblastic focal adhesion on titanium surfaces. Biomaterials. 2007;28:4521–34.

    Article  Google Scholar 

  28. Wei J, Igarashi T, Okumori N, Igarashi T, Maetani T, Liu B, Yoshinari M. Influence of surface wettability on competitive protein adsorption and initial attachment of osteoblasts. Biomed Mater. 2009;4:045002.

    Article  Google Scholar 

  29. Dahotre NB, Paital SR, Samant AN, Daniel C. Wetting behaviour of laser synthetic surface microtextures on Ti–6Al–4V for bioapplication. Philos Trans A Math Phys Eng Sci. 2010;368:1863–89.

    Article  Google Scholar 

  30. Washburn NR, Yamada KM, Simon CG Jr, Kennedy SB, Amis EJ. High-throughput investigation of osteoblast response to polymer crystallinity: influence of nanometer-scale roughness on proliferation. Biomaterials. 2004;25:1215–24.

    Article  Google Scholar 

  31. Bacakova L, Svorcik V. Cell colonization control by physical and chemical modification of materials. In: Kimura D, editor. Cell growth processes: new research. Hauppauge, NY: Nova Science Publishers, Inc.; 2008. p. 5–56.

    Google Scholar 

  32. Contreras RG, Vilchis JR, Sakagami H, Nakamura Y, Nakamura Y, Hibino Y, Nakajima H, Shimada J. Type of cell death induced by seven metals in cultured mouse osteoblastic cells. In Vivo. 2010;24:507–12.

    Google Scholar 

  33. Yamazaki T, Kobayashi M, Hirano K, Onuki H, Shimada J, Yamazaki A, Hibino Y, Nakajima H, Yokote Y, Takemoto S, Oda Y, Sakagami H. Protection against copper-induced cytotoxicity by inclusion of gold. In Vivo. 2012;26:651–6.

    Google Scholar 

  34. Blaine TA, Pollice PF, Rosier RN, Reynolds PR, Puzas JE, O’Keefe RJ. Modulation of the production of cytokines in titanium-stimulated human peripheral blood monocytes by pharmacological agents. The role of cAMP-mediated signaling mechanisms. J Bone Joint Surg Am. 1997;79:1519–28.

    Google Scholar 

Download references

Acknowledgments

This work has been partially financed by the Spanish Ministerio de Ciencia e Innovación (TEC2011-29140-C03-03), the Generalitat de Catalunya (2009-SGR-282 and 2009-SGR-1292) and the FP7-PEOPLE-2010-ITN-264635 (BioTiNet). A. Blanquer was supported by a predoctoral grant from the Universitat Autònoma de Barcelona. M. D. Baró was partially supported by an ICREA ACADEMIA award.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Pellicer or C. Nogués.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanquer, A., Pellicer, E., Hynowska, A. et al. In vitro biocompatibility assessment of Ti40Cu38Zr10Pd12 bulk metallic glass. J Mater Sci: Mater Med 25, 163–172 (2014). https://doi.org/10.1007/s10856-013-5041-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-5041-z

Keywords

Navigation