Skip to main content
Log in

Fumarate copolymers-based membranes overlooking future transdermal delivery devices: synthesis and properties

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Novel copolymers of vinyl acetate and dialkylfumarates, poly(VA-co-DRF) with R = isopropyl (DIPF) or octan-2-yl (DOF), were synthesized by radical copolymerization under microwave conditions. The products were characterized by 1H NMR and FTIR spectroscopies, size exclusion chromatography and differential scanning calorimetry. Based on these copolymers three membranes supported on polyvinyl alcohol were prepared and their morphology, swelling and mechanical properties were studied. The swelling kinetic was analyzed and interpreted in light of the Fick transport model, showing that the water transport occurs through a non-Fickian diffusion mechanism. The results show that the membrane prepared of poly(VA-co-DOF) exhibited excellent properties as potential platform for transdermal delivery system: they exhibited good tensile strength, moderated swelling and form thin and transparent films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shu KZ, Zhu KJ. The influence of multivalent phosphate structure on the properties of ionically cross-linked chitosan films for controlled drug release. Eur J Pharm Biopharm. 2002;54:235–43.

    Article  CAS  Google Scholar 

  2. Khan Y, Yaszemski MJ, Mikos AG, Laurencin CT. Tissue engineering of bone: materials and matrix considerations. J Bone Joint Surg Am. 2008;90:36–42.

    Article  Google Scholar 

  3. Kim HW, Knowles JC, Kim HE. Hydroxyapatite/poly(ε-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Biomaterials. 2004;25:1279–87.

    Article  CAS  Google Scholar 

  4. Stamatialis DF, Papenburg BJ, Gironés M, Saiful S, Bettahalli SNM, Schmitmeier S, Wessling M. Medical applications of membranes: drug delivery, artificial organs and tissue engineering. J Membr Sci. 2008;308:1–34.

    Article  CAS  Google Scholar 

  5. Ramachandran C, Fleisher D. Transdermal delivery of drugs for the treatment of bone diseases. Adv Drug Delivery Rev. 2000;42:197–223.

    Article  CAS  Google Scholar 

  6. Chase JL. Lowering the risk of esophagitis from alendronate theraphy. Am J Health Syst Pharm. 1998;55:892–3.

    CAS  Google Scholar 

  7. Schenk R, Eggi DP, Fleisch DP, Rosini S. Quantitative morphometric evaluation of the inhibitory activity of new amino-bisphosphonates on bone resorption in the rat. Calcif Tissue Int. 1986;38:342–9.

    Article  CAS  Google Scholar 

  8. Gangoiti MV, Cortizo AM, Arnol V, Felice JI, McCarthy AD. Opposing effects of bisphosphonates and advanced glycation end-products on osteoblastic cells. Eur J Pharmacol. 2008;600:140–7.

    Article  CAS  Google Scholar 

  9. Lin JH. Bisphosphonates: a review of their pharmacokinetic properties. Bone. 1996;18:75–85.

    Article  CAS  Google Scholar 

  10. Josse S, Faucheux C, Soueidan A, Grimandi G, Massiot D, Alonso B, Janvier P, Laïb S, Pilet P, Gauthier O, Daculsi G, Guicheux J, Bujoli B, Bouler JM. Novel biomaterials for bisphosphonate delivery. Biomaterials. 2005;26:2073–80.

    Article  CAS  Google Scholar 

  11. Oliveira AL, Pedro AJ, Arroyo CS, Mano JF, Rodriguez G, San Roman J, Reis RL. Biomimetic Ca–P coatings incorporating bisphosphonates produced on starch-based degradable biomaterials. J Biomed Mater Res B Appl Biomater. 2010;92:55–67.

    CAS  Google Scholar 

  12. Choi A, Ganga H, Chunb I, Gwak H. The effects of fatty acids in propylene glycol on the percutaneous absorption of alendronate across the excised hairless mouse skin. Int J Pharm. 2008;357:126–31.

    Article  CAS  Google Scholar 

  13. Kusamori K, Katsumi H, Abe M, Ueda A, Sakai R, Hayashi R, Hirai Y, Quan YS, Kamiyama F, Sakane T, Yamamoto A. Development of a novel transdermal patch of alendronate, a nitrogen-containing bisphosphonate, for the treatment of osteoporosis. J Bone Miner Res. 2010;25:2582–91.

    Article  Google Scholar 

  14. Nam SH, Xu YJ, Nam H, Jin GW, Jeong Y, An S, Park JS. Ion pairs of risedronate for transdermal delivery and enhanced permeation rate on hairless mouse skin. Int J Pharm. 2011;419:114–20.

    Article  CAS  Google Scholar 

  15. Funke AP, Günther C, Müller RH, Lipp R. Development of matrix patches for transdermal delivery of a highly lipophilic antiestrogen. Drug Dev Ind Pharm. 2003;29:785–93.

    Article  CAS  Google Scholar 

  16. Taghizadeh SM, Soroushnia A, Mirzadeh H, Barikani M. Preparation and in vitro evaluation of a new fentanyl patch based on acrylic/silicone pressure-sensitive adhesive blends. Drug Dev Ind Pharm. 2009;35:487–98.

    Article  CAS  Google Scholar 

  17. Snorradóttir BS, Gudnason PI, Thorsteinsson F, Másson M. Experimental design for optimizing drug release from silicone elastomer matrix and investigation of transdermal drug delivery. Eur J Pharm Sci. 2011;42:559–67.

    Article  Google Scholar 

  18. Tan HS, Pfister WR. Pressure-sensitive adhesives for transdermal drug delivery systems. Pharm Sci Technol Today. 1999;2:60–9.

    Article  CAS  Google Scholar 

  19. Cortizo MS, Molinuevo MS, Cortizo AM. Biocompatibility and biodegradation of polyesters and polyfumarates based-scaffold for bone tissue engineering. J Tissue Eng Regen Med. 2008;2:33–42.

    Article  CAS  Google Scholar 

  20. Fernandez JM, Molinuevo MS, Cortizo AM, McCarthy AD, Cortizo MS. Characterization of poly-ε-caprolactone/polyfumarate blends as scaffolds for bone tissue engineering. J Biomater Sci Polym Ed. 2010;21:1297–312.

    Article  CAS  Google Scholar 

  21. Fernandez JM, Molinuevo MS, Cortizo MS, Cortizo AM. Development of an osteoconductive PCL-PDIPF-hydroxyapatite composite scaffold for tissue engineering. J Tissue Eng Regen Med. 2011;5:126–35.

    Article  Google Scholar 

  22. Cortizo MS. Polymerization of diisopropyl fumarate under microwave irradiation. J Appl Polym Sci. 2007;103:3785–91.

    Article  CAS  Google Scholar 

  23. Oberti TG, Alessandrini JL, Cortizo MS. Thermal characterization of novel p-nitrobezylacrylate-diisopropyl fumarate copolímero synthesized under microwave energy. J Therm Anal Calorim. 2012;109:1525–31.

    Article  CAS  Google Scholar 

  24. Mukherjee B, Mahapatra S, Gupta R, Patra B, Tiwari A, Arora P. A comparison between povidone-ethylcellulose and povidone-eudragit transdermal dexamethasone matrix patches based on in vitro skin permeation. Eur J Pharm Biopharm. 2005;59:475–83.

    Article  CAS  Google Scholar 

  25. Cortizo MS, Alessandrini JL, Etcheverry SB, Cortizo AM. A vanadium/aspirin complex controlled release using a poly(β-propiolactone) films. Effect on osteosarcoma cells. J Biomater Sci Polym Ed. 2001;12:945–59.

    Article  CAS  Google Scholar 

  26. Ritger L, Peppas NA. A simple equation for description of solute release. I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release. 1987;5:23–6.

    Article  CAS  Google Scholar 

  27. Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E. Theoretical description of hydrogel swelling: a review. Iran Polym J. 2010;19:375–98.

    CAS  Google Scholar 

  28. Otsu T, Matsumoto A, Shiraishi K, Amaya N, Koinuma Y. Effect of the substituents on radical copolymerization of dialkylfumarates with some vinyl monomers. J Polym Sci Part A. 1992;30:1559–65.

    Article  CAS  Google Scholar 

  29. Al-Arbash AH, Elsagheer FA, Ali AAM, Elsabee MZ. Glass-transition temperature of polydialkyl fumarate copolymers. J Polym Sci Part A. 1999;37:1839–45.

    Article  CAS  Google Scholar 

  30. Otsu T, Minai H, Toyoda N, Yasuhara T. Radical high polymerization of dialkylfumarates with bulky substituents leading to less-flexible rod-like polymers. Die Makromol Chem Suppl. 1985;12:133–42.

    Article  CAS  Google Scholar 

  31. Britton D, Heatley F, Lovell PA. Chain transfer to polymer in free-radical bulk and emulsion polymerization of vinyl acetate studied by NMR spectroscopy. Macromolecules. 1998;31:2828–37.

    Article  CAS  Google Scholar 

  32. Heatley F, Lovell PA, Yamashita T. Chain transfer to polymer in free-radical solution polymerization of 2-ethylhexyl acrylate studied by NMR spectroscopy. Macromolecules. 2001;34:7636–41.

    Article  CAS  Google Scholar 

  33. Gonzalez I, Asua JM, Leiza JR. The role of methyl methacrylate on branching and gel formation in the emulsion copolymerization of BA/MMA. Polymer. 2007;48:2542–7.

    Article  CAS  Google Scholar 

  34. Koinuma Y, Murata Y, Otsu T, Goto K, Fujiwara H, Takita Y. Thermal and mechanical properties of poly(diisopropyl fumarate) blends with various polymers. Kobunshi Ronbunshu. 1997;54:301–8.

    Article  CAS  Google Scholar 

  35. Aparicio M, Duran A. Hybrid organic/inorganic sol–gel materials for proton conducting membranes. J Sol Gel Sci Technol. 2004;31:103–7.

    Article  CAS  Google Scholar 

  36. Guo R, Du X, Zhang R, Deng L, Dong A, Zhang J. Bioadhesive film formed from a novel organic–inorganic hybrid gel for transdermal drug delivery system. Eur J Pharm Biopharm. 2011;79:574–83.

    Article  CAS  Google Scholar 

  37. Yamada K, Takayanagi M, Murata Y. Relations between molecular aggregation state and mechanical properties in poly(diisopropyl fumarate). Polymer. 1986;27:1054–7.

    Article  CAS  Google Scholar 

  38. Aulton ME, Abdul-Razzak MH, Hogan JE. The mechanical properties of hydroxyl propyl methyl cellulose films derived from aqueous systems: the influence of solid inclusions. Drug Dev Ind Pharm. 1981;7:649–68.

    Article  CAS  Google Scholar 

  39. Flory PJ. Tensile strength in relation to molecular weight of high polymers. J Am Chem Soc. 1945;67:2048–50.

    Article  CAS  Google Scholar 

  40. George SC, Thomas S. Transport phenomena through polymeric systems. Prog Polym Sci. 2001;26:985–1017.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Universidad Nacional de La Plata (Project 11/X515). The authors are grateful to Fernando Amarilla for measuring the mechanical properties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Susana Cortizo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasqualone, M., Oberti, T.G., Andreetta, H.A. et al. Fumarate copolymers-based membranes overlooking future transdermal delivery devices: synthesis and properties. J Mater Sci: Mater Med 24, 1683–1692 (2013). https://doi.org/10.1007/s10856-013-4925-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4925-2

Keywords

Navigation