Skip to main content

Advertisement

Log in

Enhanced early osteogenic differentiation by silicon-substituted hydroxyapatite ceramics fabricated via ultrasonic spray pyrolysis route

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The influence of silicon-substituted hydroxyapatite (Si-HAp) on osteogenic differentiation was assessed by biological analysis. Si-HAp was prepared by ultrasonic spray pyrolysis (USSP) technique using various amounts of Si (0, 0.8, and 1.6 mass%). Chemical analysis revealed that Si was incorporated into the hydroxyapatite (HAp) lattice with no other crystalline phase and which caused the change of crystal structure. Biological analyses showed that the Si contents affected the cell proliferation and morphology, suggesting that there is an optimal Si content for cell culture. As for differentiation, alkaline phosphatase activity and osteocalcin production of Si-HAp were higher than those of HAp. Gene expression profiles also revealed that substitution of Si (0.8 mass%) up-regulated the expression levels of osteocalcin and especially Runx2, a master gene for osteoblast development. These results suggest that incorporating Si into the HAp lattice may enhance the bioactivity, particularly during early osteoblast development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res. 2002;395:81–98.

    Article  Google Scholar 

  2. Vallet-Regi M, Arcos D. Silicon substituted hydroxyapatites. A method to upgrade calcium phosphate based implants. J Mater Chem. 2005;15:1509–16.

    Article  CAS  Google Scholar 

  3. Pietak AM, Reid JW, Stott MJ, Sayer M. Silicon substitution in the calcium phosphate bioceramics. Biomaterials. 2007;28:4023–32.

    Article  CAS  Google Scholar 

  4. Hoppe A, Guldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011;32:2757–74.

    Article  CAS  Google Scholar 

  5. El Ghannam A. Bone reconstruction: from bioceramics to tissue engineering. Expert Rev Med Devices. 2005;2:87–101.

    Article  Google Scholar 

  6. Carlisle EM. Silicon: a possible factor in bone calcification. Science. 1970;167:279–80.

    Article  CAS  Google Scholar 

  7. Carlisle EM. Silicon: essential element for chick. Science. 1972;178:619–21.

    Article  CAS  Google Scholar 

  8. Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophys Res Commun. 2000;276:461–5.

    Article  CAS  Google Scholar 

  9. Botelho CM, Brooks RA, Best SM, Lopes MA, Santos JD, Rushton N, Bonfield W. Human osteoblast response to silicon-substituted hydroxyapatite. J Biomed Mater Res A. 2006;79A:723–30.

    Article  CAS  Google Scholar 

  10. Hing KA, Revell PA, Smith N, Buckland T. Effect of silicon level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds. Biomaterials. 2006;27:5014–26.

    Article  CAS  Google Scholar 

  11. Bohner M. Silicon-substituted calcium phosphates: a critical view. Biomaterials. 2009;30:6403–6.

    Article  CAS  Google Scholar 

  12. Gibson IR, Best SM, Bonfield W. Chemical characterization of silicon-substituted hydroxyapatite. J Biomed Mater Res. 1999;44:422–8.

    Article  CAS  Google Scholar 

  13. Kim SR, Lee JH, Kim YT, et al. Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviors. Biomaterials. 2003;24:1389–98.

    Article  Google Scholar 

  14. Tang XL, Xiao XF, Liu RF. Structural characterization of silicon-substituted hydroxyapatite synthesized by a hydrothermal method. Mater Lett. 2005;59:3841–6.

    Article  CAS  Google Scholar 

  15. Balamurugan A, Rebelo AHS, Lemos AF, Rocha JHG, Ventura JMG, Ferreira JMF. Suitability evaluation of sol-gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response. Dent Mater. 2008;24:1374–80.

    Article  CAS  Google Scholar 

  16. Kikushima K, Yoshihisa A, Aizawa M. Characterization of silicon-substituded hydroxyapatite powders prepared by ultrasonic spray–pyrolysis technique. Bioceramics. 2009;22:79–82.

    Google Scholar 

  17. Aizawa M, Itatani K, Okada I. Syntheses of various apatites and porous coating of biocompatible calcium-phosphate films via spray–pyrolysis technique. Phosphorus Res Bull. 2006;20:61–78.

    Article  CAS  Google Scholar 

  18. Aizawa M, Hanazawa T, Itatani K, Howell FS, Kishioka A. Characterization of hydroxyapatite powders prepared by ultrasonic spray-pyrolysis technique. J Mater Sci. 1999;34:2865–73.

    Article  CAS  Google Scholar 

  19. Honda M, Kikushima K, Konishi T, et al. Cell proliferation, morphology and differentiation of transgenic-cloned pig calvarial osteoblasts on the silicon-substituted hydorxyapatite ceramics fabricated via ultrasonic spray-pyrolysis technique. J Aust Ceram Soc. 2011;47:37–41.

    CAS  Google Scholar 

  20. Carlisle EM. In vivo requirement for silicon in articular cartilage and connective tissue formation in the chick. J Nutr. 1976;106:478–84.

    CAS  Google Scholar 

  21. Reffitt DM, Ogston N, Jugdaohsingh R, et al. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone. 2003;32:127–35.

    Article  CAS  Google Scholar 

  22. Zou S, Ireland D, Brooks RA, Rushton N, Best S. The effects of silicate ions on human osteoblast adhesion, proliferation, and differentiation. J Biomed Mater Res B. 2009;90B:123–30.

    CAS  Google Scholar 

  23. Langstaff S, Sayer M, Smith TJ, Pugh SM, Hesp SA, Thompson WT. Resorbable bioceramics based on stabilized calcium phosphates. Part I: rational design, sample preparation and material characterization. Biomaterials. 1999;20:1727–41.

    Article  CAS  Google Scholar 

  24. Gomes S, Renaudin G, Mesbah A, et al. Thorough analysis of silicon substitution in biphasic calcium phosphate bioceramics: a multi-technique study. Acta Biomater. 2010;6:3264–74.

    Article  CAS  Google Scholar 

  25. Botelho CM, Lopes MA, Gibson IR, Best SM, Santos JD. Structural analysis of Si-substituted hydroxyapatite: zeta potential and X-ray photoelectron spectroscopy. J Mater Sci Mater Med. 2002;13:1123–7.

    Article  CAS  Google Scholar 

  26. Schroeder TM, Jensen ED, Westendorf JJ. Runx2: a master organizer of gene transcription in developing and maturing osteoblasts. Birth Defects Res C Embryo Today. 2005;75:213–25.

    Article  CAS  Google Scholar 

  27. Thian ES, Ahmad Z, Huang J, et al. The role of surface wettability and surface charge of electrosprayed nanoapatites on the behaviour of osteoblasts. Acta Biomater. 2010;6:750–5.

    Article  CAS  Google Scholar 

  28. Zhu XD, Zhang HJ, Fan HS, Li W, Zhang XD. Effect of phase composition and microstructure of calcium phosphate ceramic particles on protein adsorption. Acta Biomater. 2010;6:1536–41.

    Article  CAS  Google Scholar 

  29. Coelho MJ, Fernandes MH. Human bone cell cultures in biocompatibility testing. Part II: effect of ascorbic acid, beta-glycerophosphate and dexamethasone on osteoblastic differentiation. Biomaterials. 2000;21:1095–102.

    Article  CAS  Google Scholar 

  30. Guth K, Buckland T, Hing KA. Silicon dissolution from microporous silicon substituted hydroxyapatite and its effect on osteoblast behaviour. Key Eng Mater. 2006;309–311:117–20.

    Article  Google Scholar 

  31. Curtis A, Wilkinson C. Topographical control of cells. Biomaterials. 1997;18:1573–83.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michiyo Honda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honda, M., Kikushima, K., Kawanobe, Y. et al. Enhanced early osteogenic differentiation by silicon-substituted hydroxyapatite ceramics fabricated via ultrasonic spray pyrolysis route. J Mater Sci: Mater Med 23, 2923–2932 (2012). https://doi.org/10.1007/s10856-012-4744-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4744-x

Keywords

Navigation