, Volume 21, Issue 6, pp 1959-1968

In vitro biocompatibility and corrosion resistance of a new implant titanium base alloy

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

One objective of this work was to study the corrosion resistance of the new implant Ti–10Zr–5Ta–5Nb alloy in physiological fluids of different pH values, simulating the extreme functional conditions. Another objective was in vitro biocompatibility evaluation of the new alloy using human fetal osteoblast cell line hFOB 1.19. Cytocompatibility was assessed by determination of possible material cytotoxic effects, cell morphology and cell adhesion. The thermo-mechanical processing of the new implant alloy consisted in plastic deformation (almost 90%) performed by hot rolling accompanied by an initial and final heat treatment. The new Ti–10Zr–5Ta–5Nb alloy presented self-passivation, with a large passive potential range and low passive current densities, namely, a very good anticorrosive resistance in Ringer solution of acid, neutral and alkaline pH values. Cell viability was not affected by the alloy substrate presence and a very good compatibility was noticed.