Journal of Materials Science: Materials in Medicine

, Volume 18, Issue 7, pp 1317–1323

Adhesion and growth of vascular smooth muscle cells in cultures on bioactive RGD peptide-carrying polylactides

Authors

    • Institute of PhysiologyAcademy of Sciences of the Czech Republic
  • Elena Filova
    • Institute of PhysiologyAcademy of Sciences of the Czech Republic
  • Dana Kubies
    • Institute of Macromolecular ChemistryAcademy of Sciences of the Czech Republic
  • Ludka Machova
    • Institute of Macromolecular ChemistryAcademy of Sciences of the Czech Republic
  • Vladimir Proks
    • Institute of Macromolecular ChemistryAcademy of Sciences of the Czech Republic
  • Vesela Malinova
    • Institute of Macromolecular ChemistryAcademy of Sciences of the Czech Republic
  • Vera Lisa
    • Institute of PhysiologyAcademy of Sciences of the Czech Republic
  • Frantisek Rypacek
    • Institute of Macromolecular ChemistryAcademy of Sciences of the Czech Republic
Article

DOI: 10.1007/s10856-006-0074-1

Cite this article as:
Bacakova, L., Filova, E., Kubies, D. et al. J Mater Sci: Mater Med (2007) 18: 1317. doi:10.1007/s10856-006-0074-1

Abstract

The surface of poly(l-lactide) (PLLA) films deposited on glass coverslips was modified with poly(dl-lactide) (PDLLA), or 1:4 mixtures of PDLLA and PDLLA-b-PEO block copolymers, in which either none, 5% or 20% of the copolymer molecules carried a synthetic extracellular matrix-derived ligand for integrin adhesion receptors, the GRGDSG oligopeptide, attached to the end of the PEO chain. The materials, perspective for vascular tissue engineering, were seeded with rat aortic smooth muscle cells (11,000 cells/cm2) and the adhesion, spreading, DNA synthesis and proliferation of these cells was followed on inert and bioactive surfaces. In 24-h-old cultures in serum-supplemented media, the number of cells adhering to the PDLLA-b-PEO copolymer was almost eight times lower than that on the control PDLLA surface. On the surfaces containing 5% and 20% GRGDSG-PEO-b-PDLLA copolymer, the number of cells increased 6- and 3-fold respectively, compared to the PDLLA-b-PEO copolymer alone. On PDLLA-b-PEO copolymer alone, the cells were typically round and non-spread, whereas on GRGDSG-modified surfaces the cell spreading areas approached those found on PDLLA, reaching values of 991 μm2 and 611 μm2 for 5% and 20% GRGDSG respectively, compared to 958 μm2 for PDLLA. The cells on GRGDSG-grafted copolymers were able to form vinculin-containing focal adhesion plaques, to synthesize DNA and even proliferate in a serum-free medium, which indicates specific binding to the GRGDSG sequences through their adhesion receptors.

Copyright information

© Springer Science+Business Media, LLC 2007