Article

Journal of Materials Science: Materials in Medicine

, Volume 16, Issue 10, pp 889-897

Characterization and bond strength of electrolytic HA/TiO2 double layers for orthopaedic applications

  • Chi-Min LinAffiliated withDepartment of Materials Engineering, National Chung Hsing University
  • , Shiow-Kang YenAffiliated withDepartment of Materials Engineering, National Chung Hsing University Email author 

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Insufficient bonding of juxtaposed bone to an orthopaedic/dental implant could be caused by material surface properties that do not support new bone growth. For this reason, fabrication of biomaterials surface properties, which support osteointegration, should be one of the key objectives in the design of the next generation of orthopaedic/dental implants. Titanium and titanium alloy have been widely used in several bioimplant applications, but when implanted into the human body, these still contain some disadvantages, such as poor osteointegration (forming a fibrous capsule), wear debris and metal ion release, which often lead to clinical failure. Electrolytic hydroxyapatite/titanium dioxide (HA/TiO2) double layers were successfully deposited on titanium substrates in TiCl4 solution and subsequently in the mixed solution of Ca(NO3)2 and NH4H2PO4, respectively. After annealing at 300∘C for 1 h in the air, the coated specimens were evaluated by dynamic cyclic polarization tests, immersion tests, tensile tests, surface morphology observations, XRD analyses and cells culture. The adhesion strength of the HA coating were improved by the intermediate coating of TiO2 from 11.3 to 46.7 MPa. From cell culture and immersion test results, the HA/TiO2 coated specimens promoted not only cells differentiation, but also appeared more bioactive while maintaining non-toxicity.