Skip to main content
Log in

Effect of laser irradiation on activation energy, irreversibility field and upper critical magnetic field of bulk MgB2 superconductor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the role of laser irradiation on the upper critical field (H c2), the irreversibility field (H irr) and the activation energy (U 0) of bulk MgB2 superconductor was first time investigated with the aid of magnetoresistivity measurements conducted at different applied magnetic fields in a range of 0–15 kOe as a function of temperature from 25 to 40 K. For this aim, a disk shaped MgB2 superconductor was produced and cut into two pieces. One of the pieces was irradiated under high vacuum conditions by using an Nd:YVO4 laser. The obtained results showed an increase in the critical temperature (T c ) by about 1 K after irradiation. Also, the values of H c2(0) were respectively found to be around 143 and 151 kOe while the values of H irr(0) were about 122 and 130 kOe for the reference and the irradiated samples. Using the thermally activated flux flow model the dependence of U 0 on magnetic field was determined. The maximum U 0 values of 0.43 and 0.83 eV in zero magnetic field were respectively obtained for the reference and the irradiated samples. Also, the magnetic field dependence of the critical current density J c (B) values at different temperatures were slightly increased after the irradiation. These results point out that the superconducting properties of bulk MgB2 can be improved via laser irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zentiani, J. Akimitsu, Nature 410, 63 (2001)

    Article  Google Scholar 

  2. V. Braccini, A. Gurevich, J.E. Giencke, M.C. Jewell, C.B. Eom, D.C. Larbalestier,  A. Pogrebnyakov, Y. Cui, B.T. Liu, Y.F. Hu, J.M. Redwing, Q. Li, X.X. Xi, R.K. Singh, R. Gandikota, J. Kim, B. Wilkens, N. Newman, J. Rowell, B. Moeckly, V. Ferrando, C. Tarantini, D. Marré, M. Putti, C. Ferdeghini, R. Vaglio, E. Haanappel, Phys. Rev. B 71, 012504 (2005)

    Article  Google Scholar 

  3. M.H. Jung, M. Jaime, A.H. Lacerda, G.S. Boebinger, W.N. Kang, H.J. Kim, E.M. Choi, S.I. Lee, Chem. Phys. Lett. 343, 447 (2001)

    Article  Google Scholar 

  4. C. Buzea, T. Yamashita, Supercond. Sci. Technol. 14, R115 (2001)

    Article  Google Scholar 

  5. W.N. Kang, H.-J. Kim, E.-M. Choi, C.U. Jung, S.-I. Lee, Science 292, 1521 (2001)

    Article  Google Scholar 

  6. H.-J. Kim, W.N. Kang, E.-M. Choi, M.-S. Kim, K.H.P. Kim, S.-I. Lee, Phys. Rev. Lett. 87, 087002 (2001)

    Article  Google Scholar 

  7. D.C. Larbalestier, L.D. Cooley, M.O. Rikel, A.A. Polyanskii, J. Jiang, S. Patnaik, X.Y. Cai et al., Nature 410, 186 (2001)

    Article  Google Scholar 

  8. W.K. Yeoh, J.H. Kim, J. Horvat, X. Xu, M.J. Qin, S.X. Dou, C.H. Jiang, T. Nakane, H. Kumakura, P. Munroe, Supercond. Sci. Technol. 19, 596 (2006)

    Article  Google Scholar 

  9. S.X. Dou, V. Braccini, S. Soltanian, R. Klie, Y. Zhu, S. Li, X.L. Wang, D.J. Larbalestier, Appl. Phys. 96, 7549 (2004)

    Article  Google Scholar 

  10. E. Yanmaz, B. Savaskan, M. Basoglu, E.T. Koparan, N.R. Dilley, C.R.M. Grovenor, J. Alloys Compd. 480, 203 (2009)

    Article  Google Scholar 

  11. A. Serquis, X.Z. Liao, Y.T. Zhu, J.Y. Coulter, J.Y. Huang et al., J. Appl. Phys. 92, 351 (2002)

    Article  Google Scholar 

  12. S.R. Shinde, S.B. Ogale, J. Higgins, R.J. Choudhary, V.N. Kulkarni, T. Venkatesan, H. Zheng et al., Appl. Phys. Lett. 84, 2352 (2004)

    Article  Google Scholar 

  13. S. Okayasu, M. Sasase, K. Hojou, Y. Chimi, A. Iwase, H. Ikeda, R. Yoshizaki, T. Kambara, H. Sato, Y. Hamatani, A. Maeda, Phys. C 382, 104 (2002)

    Article  Google Scholar 

  14. I.M. Obaidat, H.P. Goeckner, B.A. Albiss, J.S. Kouvel, Cryst. Res. Technol. 43, 837 (2008)

    Article  Google Scholar 

  15. I.M. Obaidat, B.A. Albiss, M. Gharaibeh, M.K. Hasan, Cryst. Res. Technol. 44, 281 (2009)

    Article  Google Scholar 

  16. R.C. Ma, W.H. Song, X.B. Zhu, L. Zhang, S.M. Liu, J. Fang, J.J. Du, Y.P. Suna, C.S. Li, Z.M. Yu, Y. Feng, P.X. Zhang, Phys. C 405, 34 (2004)

    Article  Google Scholar 

  17. T.T. Palstra, B. Batlogg, L.F. Schneemeyer, J.V. Waszczak, Phys. Rev. Lett. 61, 1662 (1988)

    Article  Google Scholar 

  18. R. Griessen, Phys. Rev. Lett. 64, 1674 (1990)

    Article  Google Scholar 

  19. A.P. Malozemoff, T.K. Worthington, E. Zeldov, N.C. Yeh, M.W. McElfresh, F. Holtzberg, in Strong Correlation and Superconductivity, ed. by H. Fukuyama, S. Maekawa, A.P. Malozemoff (Springer, Heidelberg, 1989), p. 349

  20. M. Dogruer, G. Yildirim, C. Terzioglu, J. Mater. Sci. Mater. Electron. 24, 392 (2013)

    Article  Google Scholar 

  21. X. Wan, Y. Sun, W. Song, L. Jiang, K. Wang, J. Du, Supercond. Sci. Technol. 11, 1079 (1998)

    Article  Google Scholar 

  22. M.H. Pu, W.H. Song, B. Zhao, X.C. Wu, Y.P. Sun, J.J. Du, J. Fang, Phys. C 361, 181 (2001)

    Article  Google Scholar 

  23. S. Vinu, P.M. Sarun, R. Shabna, U. Syamaprasad, J. Alloys Compd. 487, 1 (2009)

    Article  Google Scholar 

  24. O. Erdem, K. Ozturk, S.B. Guner, S. Celik, E. Yanmaz, J. Low Temp. Phys. 177, 28 (2014)

    Article  Google Scholar 

  25. M. Inui, P.B. Littlewood, S.N. Coppersmith, Phys. Rev. Lett. 63, 2421 (1989)

    Article  Google Scholar 

  26. N.V. Vo, H.K. Liu, S.X. Dou, Supercond. Sci. Technol. 9, 104 (1996)

    Article  Google Scholar 

  27. G.B. Smith, J.M. Bell, S.W. Filipczuk, C. Andrikidis, Phys. C 160, 333 (1989)

    Article  Google Scholar 

  28. J.H. Kim, S.X. Dou, D.Q. Shi, M. Rindfleisch, M. Tomsic, Supercond. Sci. Technol. 20, 1026 (2007)

    Article  Google Scholar 

  29. H. Kitaguchi, A. Matsumoto, H. Hatakeyama, H. Kumakura, Supercond. Sci. Technol. 17, S486 (2004)

    Article  Google Scholar 

  30. C.S. Yadav, P.L. Paulose, New J. Phys. 11, 103046 (2009)

    Article  Google Scholar 

  31. C.P. Bean, Phys. Rev. Lett. 8, 250 (1962)

    Article  Google Scholar 

  32. B.K. Roul, A.K. Pradhan, V.V. Rao, P. Bhattacharya, P. Pramanic, V.R. Kalvey, D.N. Bose, K.L. Chopra, Bull. Mater. Sci. 14, 713 (1991)

    Article  Google Scholar 

  33. M. Okutomi, H. Nomura, T. Tsukamoto, N.B. Dahotre, H. Shen, Nucl. Instrum. Methods Res. B 169, 6 (2000)

    Article  Google Scholar 

  34. Y. Ding, H.C. Wang, F.X. Zhao, Z.X. Shi, Z.L. Zhang, L. Ma, H.L. Suo, J. Supercond. Nov. Magn. 23, 633 (2010)

    Article  Google Scholar 

  35. P.W. Anderson, Phys. Rev. Lett. 9, 309 (1962)

    Article  Google Scholar 

  36. G. Yildirim, S. Bal, A. Varilci, J. Supercond. Nov. Magn. 25, 1655 (2012)

    Article  Google Scholar 

  37. B.K. Roul, J. Supercond. 7, 841 (1994)

    Article  Google Scholar 

  38. M. Dogruer, G. Yildirim, C. Terzioglu, J. Mater. Sci. Mater. Electron. 24, 958 (2013)

    Article  Google Scholar 

  39. D.C. Larbalestier, A. Gurevich, D.M. Feldmann, A.A. Polyanskii, Nature 414, 368 (2001)

    Article  Google Scholar 

  40. A.I. Abou-Aly, S.A. Mahmoud, R. Awad, M.M.E. Barakat, Supercond. Nov. Magn. 23, 1575 (2010)

    Article  Google Scholar 

  41. A.I. Abou-Aly, M.T. Korayem, N.G. Gomaa, R. Awad, M.A. Al-Hajji, Supercond. Sci. Technol. 12, 147 (1999)

    Article  Google Scholar 

  42. Y. Zhao, S.X. Dou, M. Ionescu, P. Munroe, Appl. Phys. Lett. 88, 012502 (2006)

    Article  Google Scholar 

  43. H.L. Li, K.Q. Ruan, S.Y. Li, Y. Yu, C.Y. Wang, L.Z. Cao, Phys. C 386, 560 (2003)

    Article  Google Scholar 

  44. S.D. Kaushik, V. Braccini, S. Patnaik, Pramana J. Phys. 71, 1335 (2008)

    Article  Google Scholar 

  45. B.K. Roul, J. Supercond. 6, 93 (1993)

    Article  Google Scholar 

  46. M.D. Sumption, M. Bhatia, S.X. Dou, M. Rindfliesch, M. Tomsic, L. Arda, M. Ozdemir, Y. Hascicek, E.W. Collings, Supercond. Sci. Technol. 17, 1180 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Council of Higher Education (Turkey). The authors would like to acknowledge the use of Servicio General de Apoyo a la Investigación-SAI, Universidad de Zaragoza for the laser treatments. The authors gratefully acknowledge Dr. Şükrü ÇELİK (Sinop University) and S. Barış Güner (Recep Tayyip Erdogan University) for their assistance with the magnetoresistivity measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Erdem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erdem, O., Yanmaz, E. Effect of laser irradiation on activation energy, irreversibility field and upper critical magnetic field of bulk MgB2 superconductor. J Mater Sci: Mater Electron 27, 6502–6510 (2016). https://doi.org/10.1007/s10854-016-4592-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4592-4

Keywords

Navigation