Skip to main content
Log in

On the band-structure lineup at Ga2O3, Gd2O3, and Ga2O3(Gd2O3) heterostructures and Ga2O3 Schottky contacts

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The interface-induced gap states (IFIGS) are the fundamental mechanism that determines the band-structure lineup at semiconductor interfaces, i.e., the band-edge offsets at semiconductor heterostructures and the barrier heights of metal–semiconductor or Schottky contacts. Both quantities are composed of a zero-charge transfer and an electrostatic-dipole term which are given by the IFIGS’s branch-point energies and the electronegativities of the two solids in contact, respectively. A respective analysis of experimental valence-band offsets of Ga2O3 and Gd2O3 heterostructures results in the empirical p-type branch-point energies of 3.57 and 2.85 eV, respectively. From experimental barrier heights of n-Ga2O3 Schottky contacts an empirical n-type branch-point energy of 1.34 eV is obtained. The p- and n-type branch point energies of Ga2O3 add up to 4.91 eV, the width of the Ga2O3 band gap, as to be expected from the theoretical IFIGS-and-electronegativity concept. The experimental valence-band offsets of Ga2O3(Gd2O3) heterostructures indicate that at their interfaces the chemical composition of the oxide differs from its nominal value in the bulk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Orita, H. Ohta, M. Hirano, H. Hosono, Appl. Phys. Lett. 77, 4166 (2000)

    Article  Google Scholar 

  2. S.-H. Chang, Z.-Z. Chen, W. Huang, X.-C. Liu, B.-Y. Chen, Z.-Z. Li, Er-W. Shi, Chin. Phys. B 20, 116101 (2011)

    Article  Google Scholar 

  3. W. Wei, Z. Qin, S. Fan, Z. Li, K. Shi, Q. Zhu, G. Zhang, Nanoscale Res. Lett. 7, 562 (2012)

    Article  Google Scholar 

  4. M. Grodzicki, P. Mazur, S. Zuber, J. Brona, A. Ciszewski, Appl. Surf. Sci. 304, 20 (2014)

    Article  Google Scholar 

  5. T. Kamimura, K. Sasaki, M.H. Wong, D. Krishnamurthy, A. Kuramata, T. Masui, S. Yamakoshi, M. Higashiwaki, Appl. Phys. Lett. 104, 192104 (2014)

    Article  Google Scholar 

  6. Y. Jia, K. Zeng, J.S. Wallace, J.A. Gardella, U. Singisetti, Appl. Phys. Lett. 106, 102107 (2015)

    Article  Google Scholar 

  7. D. Landheer, J.A. Gupta, G.I. Sproule, J.P. McCaffrey, M.J. Graham, K.-C. Yang, Z.-H. Lu, W.N. Lennard, J. Electrochem. Soc. 148, G29 (2001)

    Article  Google Scholar 

  8. V.V. Afanas'ev, A. Stesmans, M. Passlack, N. Medendorp, Appl. Phys. Lett. 85, 597 (2004)

    Article  Google Scholar 

  9. V.V. Afanas'ev, S. Shamuilia, A. Stesmans, A. Dimoulas, Y. Panayiotatos, A. Sotiropoulos, M. Houssa, D.P. Brunco, Appl. Phys. Lett. 88, 132111 (2006)

    Article  Google Scholar 

  10. V.V. Afanas'ev, A. Stesmans, R. Droopad, M. Passlack, L.F. Edge, D.G. Schlom, Appl. Phys. Lett. 89, 092103 (2006)

    Article  Google Scholar 

  11. A. Fissel, D. Kühne, E. Bugiel, H.J. Osten, J. Vac. Sci. Technol. B 24, 2041 (2006)

    Article  Google Scholar 

  12. M. Badylevich, S. Shamuilia, V.V. Afanas'ev, A. Stesmans, A. Laha, H.J. Osten, A. Fissel, Appl. Phys. Lett. 90, 252101 (2007)

    Article  Google Scholar 

  13. M. Perego, A. Molle, M. Fanciulli, Appl. Phys. Lett. 92, 042106 (2008)

    Article  Google Scholar 

  14. W.H. Chang, C.H. Lee, Y.C. Chang, P. Chang, M.L. Huang, Y.J. Lee, C.H. Hsu, J.M. Hong, C.C. Tsai, J.R. Kwo, M. Hong, Adv. Mater. 21, 4970 (2009)

    Article  Google Scholar 

  15. Y.P. Chiu, B.C. Huang, M.C. Shih, J.Y. Shen, P. Chang, C.S. Chang, M.L. Huang, M.-H. Tsai, M. Hong, J. Kwo, Appl. Phys. Lett. 99, 212101 (2011)

    Article  Google Scholar 

  16. H.-C. Chiu, H.-C. Wang, Y-C. Luo, F.-H. Huang, H.-L. Kao, K.-Po Hsueh, Microelectron. Eng. 118, 20 (2014)

    Article  Google Scholar 

  17. J.F. Ihlefeld, M. Brumbach, A.A. Allerman, D.R. Wheeler, S. Atcitty, Appl. Phys. Lett. 105, 012102 (2014)

    Article  Google Scholar 

  18. L.K. Chu, T.D. Lin, M.L. Huang, R.L. Chu, C.C. Chang, J. Kwo, M. Hong, Appl. Phys. Lett. 94, 202108 (2009)

    Article  Google Scholar 

  19. T.S. Lay, M. Hong, J. Kwo, J.P. Mannaerts, W.H. Hung, D.J. Huang, Solid State Electron. 45, 1679 (2001)

    Article  Google Scholar 

  20. T.-W. Pi, W.C. Lee, M.L. Huang, L.K. Chu, T.D. Lin, T.H. Chiang, Y.C. Wang, Y.D. Wu, M. Hong, J. Kwo, J. Appl. Phys. 109, 063725 (2011)

    Article  Google Scholar 

  21. R. Suzuki, S. Nakagomi, Y. Kokubun, N. Arai, S. Ohira, Appl. Phys. Lett. 94, 222102 (2009)

    Article  Google Scholar 

  22. K. Irmscher, Z. Galazka, M. Pietsch, R. Uecker, R. Fornari, J. Appl. Phys. 110, 063720 (2011)

    Article  Google Scholar 

  23. M. Mohamed, K. Irmscher, C. Janowitz, Z. Galazka, R. Manzke, R. Fornari, Appl. Phys. Lett. 101, 132106 (2012)

    Article  Google Scholar 

  24. K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, S. Yamakoshi, IEEE Electron. Device Lett. 34, 493 (2013)

    Article  Google Scholar 

  25. D. Splith, S. Müller, F. Schmidt, H. von Wenckstern, J.J. van Rensburg, W.E. Meyer, M. Grundmann, Phys. Status Solidi A 211, 40 (2014)

    Article  Google Scholar 

  26. H. Altuntas, I. Donmez, C. Ozgit-Akgun, N. Biyikli, J. Alloys Compd. 593, 190 (2014)

    Article  Google Scholar 

  27. T. Oishi, Y. Koga, K. Harada, M. Kasu, Appl. Phys. Express 8, 031101 (2015)

    Article  Google Scholar 

  28. V. Heine, Phys. Rev. 138, A1689 (1965)

    Article  Google Scholar 

  29. C. Tejedor, F. Flores, J. Phys. C 11, L19 (1978)

    Article  Google Scholar 

  30. W. Mönch, Semiconductor Surfaces and Interfaces, 2nd edn. (Springer, Berlin, 1995)

    Book  Google Scholar 

  31. L.N. Pauling, The Nature of the Chemical Bond (CorneII University, Ithaca, 1939)

    Google Scholar 

  32. A.R. Miedema, P.F. de Châtel, F.R. de Boer, Physica 100B, 1 (1980)

    Google Scholar 

  33. W. Mönch, in Festkörperprobleme (Adv. Solid State Physics), vol. 26, ed. by P. Grosse (Vieweg, Braunschweig, 1986), p. 67

  34. W. Mönch, Phys. Rev. Lett. 58, 1260 (1987)

    Article  Google Scholar 

  35. J. Tersoff, Phys. Rev. Lett. 52, 465 (1984)

    Article  Google Scholar 

  36. V.N. Brudnyi, S.N. Grinyaev, V.E. Stepanov, Phys. B 212, 429 (1995)

    Article  Google Scholar 

  37. W. Mönch, J. Appl. Phys. 80, 5076 (1996)

    Article  Google Scholar 

  38. J. Robertson, J. Vac. Sci. Technol. B 18, 1788 (2000)

    Article  Google Scholar 

  39. J. Robertson, B. Falabretti, J. Appl. Phys. 100, 014111 (2006)

    Article  Google Scholar 

  40. A. Schleife, F. Fuchs, C. Rödl, J. Furthmüller, F. Bechstedt, Appl. Phys. Lett. 94, 012104 (2009)

    Article  Google Scholar 

  41. B. Höffling, A. Schleife, F. Fuchs, C. Rödl, F. Bechstedt, Appl. Phys. Lett. 97, 032116 (2010)

    Article  Google Scholar 

  42. W. Mönch, Electronic Properties of Semiconductor Interfaces (Springer, Berlin, 2004)

    Book  Google Scholar 

  43. W. Mönch, Appl. Phys. Lett. 93, 172118 (2008)

    Article  Google Scholar 

  44. W. Mönch, J. Appl. Phys. 109, 113724 (2011)

    Article  Google Scholar 

  45. W. Mönch, Appl. Phys. Lett. 91, 042117 (2007)

    Article  Google Scholar 

  46. M. Rebien, W. Henrion, M. Hong, J.P. Mannaerts, M. Fleischer, Appl. Phys. Lett. 81, 250 (2002)

    Article  Google Scholar 

  47. E.V. Dupelov, S.S. Barsanov, G.N. Kustova, J. Struct. Chem. 13, 871 (1973)

    Article  Google Scholar 

  48. M. Hong, Z.H. Lu, J. Kwo, A.R. Kortan, J.P. Mannaerts, J.J. Krajewski, K.C. Hsieh, L.J. Chou, K.Y. Cheng, Appl. Phys. Lett. 76, 312 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winfried Mönch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mönch, W. On the band-structure lineup at Ga2O3, Gd2O3, and Ga2O3(Gd2O3) heterostructures and Ga2O3 Schottky contacts. J Mater Sci: Mater Electron 27, 1444–1448 (2016). https://doi.org/10.1007/s10854-015-3909-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3909-z

Keywords

Navigation