Skip to main content
Log in

Optical and structural investigation of synthesized PVA/PbS nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polymer nanocomposite based on polyvinyl alcohol (PVA) and lead sulfide (PbS) in the average radius of (1.88–2.23) nm, have been synthesized using the chemical reduction rote and solution casting technique for different concentrations of PbS. The characterization of the polymer nanocomposite films were carried out using UV–visible spectroscopy, SEM, and XRD. The effect of various concentration of PbS NP on the optical properties of the composite has been studied to understand the optimum conditions for the synthesis process. The nanocomposite film shows high UV and visible light absorptions in the wavelength range of (200–500) nm, which correspond to the characteristics of the PbS NPs. The significant decreasing trend of the direct allowed band gap of the nanocomposite was observed upon increasing the Pb source concentration, from (6.27 eV) for pure PVA to (2.34 eV) for 0.04 M PbS concentration, which is much higher than the energy gap of bulk PbS value (0.41 eV). The calculated values of the static refractive index of Cauchy dispersion model were in the range of (1.09–1.20). X-ray diffraction analysis confirmed the cubic nanocrystalline PbS phase formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. U. Baishya, D. Sarkar, Bull. Mater. Sci. 34, 1285–1288 (2011)

    Article  Google Scholar 

  2. E. Ruiz-Hitzky, P. Aranda, M. Darder, M. Ogawa, Chem. Soc. Rev. 40, 801–828 (2011)

    Article  Google Scholar 

  3. M. Oliveira, A.V. Machado, Preparation of Polymer-Based Nanocomposites by Different Routes. Nanocomposites: Synthesis, Characterization and Applications (NOVA Publishers, Hauppauge, 2013)

    Google Scholar 

  4. A. El-Khodary, A.H. Oraby, A.E. Youssef, Int. J. Mater. Sci. 3, 11–24 (2008)

    Google Scholar 

  5. S.H. Deshmukh, D.K. Burghate, S.N. Shilaska, P.T. Deshmukh, Indian J. Pure Appl. Phys. 46, 344–348 (2008)

    Google Scholar 

  6. OGh Abdullah, D.R. Saber, S.A. Taha, Adv. Mater. Letters 6, 153–157 (2015)

    Google Scholar 

  7. J.C. Ferrer, A.S. Castillo, J.L. Alonso, S.F. de Avila, R. Mallavia, Mater. Lett. 63, 638–640 (2009)

    Article  Google Scholar 

  8. A.L. Alvarez, J. Tito, M.B. Vaello, P. Velasquez, R. Mallavia, M.M. Sanchez-Lopez, S.F. de Avila, Thin Solid Films 433, 277–280 (2003)

    Article  Google Scholar 

  9. OGh Abdullah, D.R. Saber, Appl. Mech. Mater. 110–116, 177–182 (2012)

    Google Scholar 

  10. M. Ghanipour, D. Dorranian, J. Nanomater. 2013, 1–10 (2013)

    Article  Google Scholar 

  11. P.K. Khanna, R. Gokhale, V.V.V.S. Subbarao, A.K. Vishwanath, B.K. Das, C.V.V. Satyanarayana, Mater. Chem. Phys. 92, 229–233 (2005)

    Article  Google Scholar 

  12. F. El-Tantawy, K.M. Abdel-Kader, F. Kaneko, Y.K. Sung, Eur. Polym. J. 40, 415–430 (2004)

    Article  Google Scholar 

  13. J. Kuljanin, M.I. Comor, V. Djokovic, J.M. Nedeljkovic, Mater. Chem. Phys. 95, 67–71 (2006)

    Article  Google Scholar 

  14. J. Rozra, I. Saini, A. Sharma, N. Chandak, S. Aggarwal, R. Dhiman, P.K. Sharma, Mater. Chem. Phys. 134, 1121–1126 (2012)

    Article  Google Scholar 

  15. J. Kakati, P. Datta, J. Lumin. 138, 25–31 (2013)

    Article  Google Scholar 

  16. V. Bala, M. Sharma, S.K. Tripathi, R. Kumar, Mater. Chem. Phys. 146, 523–530 (2014)

    Article  Google Scholar 

  17. M. Halajan, M.J. Torkamany, D. Dorranian, J. Phys. Chem. Solids 75, 1187–1193 (2014)

    Article  Google Scholar 

  18. H. Karami, M. Ghasemi, S. Matini, Int. J. Electrochem. Sci. 8, 11661–11679 (2013)

    Google Scholar 

  19. S. Zhou, Y. Feng, J. Mater. Res. 18, 1188–1193 (2003)

    Article  Google Scholar 

  20. H. Wu, Y. Yang, E. Oh, F. La, D. Yu, Nanotechnology 23, 265602 (2012)

    Article  Google Scholar 

  21. X. Yang, Q.S. Wu, Y.P. Ding, J. Liu, Korean Chem. Soc. 27, 377–380 (2006)

    Article  Google Scholar 

  22. A.V. Borhade, B.K. Uphade, Chalcogenide Lett. 9, 299–306 (2012)

    Google Scholar 

  23. M. Gunasekaran, M. Ichimura, Jpn. J. Appl. Phys. 44, 7345 (2005)

    Article  Google Scholar 

  24. C. Garcia, V. Coello, Z. Han, I.P. Radko, S.I. Bozhevolnyi, Opt. Express 20, 7771–7776 (2012)

    Article  Google Scholar 

  25. R.S. Kane, R.E. Cohen, R. Silbey, J. Phys. Chem. 100, 7928 (1996)

    Article  Google Scholar 

  26. S. Jana, R. Thapa, R. Maity, K.K. Chattopadhyay, Phys. E 40, 3121–3126 (2008)

    Article  Google Scholar 

  27. T. Johansson, Naturwissenschaften., 20 (1932) 758; Z. Phys., 82 (1933) 507

  28. OGh Abdullah, Eur. Sci. J. 10, 406–417 (2014)

    Google Scholar 

  29. J. Tauc, Amorphous and Liquid Semiconductor (Plenum Publishing Company LTD, London, 1973)

    Google Scholar 

  30. V.I. Fediv, G.Y. Rudko, A.I. Savchuk, E.G. Gule, A.G. Voloshchuk, Semiconductor Physics. Quantum Electron. Optoelectron. 15, 117–123 (2012)

    Google Scholar 

  31. L.E. Brus, J. Chem. Phys. 80, 4403–4409 (1984)

    Article  Google Scholar 

  32. Elfurawi U., Optical and Electronic Properties of PbS Colloidal Nanocrystals, PhD dissertation, University of Nottingham (2012)

  33. F. Urbach, Phys. Rev. 92, 1324 (1953)

    Article  Google Scholar 

  34. V. Raja, A.K. Sarma, V.V.R. Rao, Mater. Lett. 57, 4678–4683 (2003)

    Article  Google Scholar 

  35. M.J. Tommalieh, A.M. Zihlif, Phys. B 405, 4750–4754 (2010)

    Article  Google Scholar 

  36. T.W. Hagler, K. Pakbaz, K.F. Voss, A.J. Heeger, Phys. Rev. B 44, 8652–8666 (1991)

    Article  Google Scholar 

  37. K. Pichler, D.A. Halliday, D.D.C. Bradley, P.L. Burn, R.H. Friend, A.B. Holmes, J. Phys. Condens. Matter 5, 7155–7172 (1993)

    Article  Google Scholar 

  38. F. Yakuphanoglu, M. Kandaz, M.N. Yarasır, F.B. Senkal, Phys. B 393, 235–238 (2007)

    Article  Google Scholar 

  39. D.S.D. Amma, V.K. Vaidyan, P.K. Manoj, Mater. Chem. Phys. 93, 194–201 (2005)

    Article  Google Scholar 

  40. M.M. Demir, K. Koynov, U. Akbey, C. Bubeck, I. Park, I. Lieberwirth, G. Wegner, Macromolecules 40, 1089–1100 (2007)

    Article  Google Scholar 

  41. K. Rajesh, P.P. Kumar, Int. J. Sci. Res. 3, 799–802 (2014)

    Google Scholar 

  42. Kim Y.S., Electrical Conductivity of Segregated Network Polymer Nanocomposites, PhD dissertation, Texas A&M University (2007)

  43. S. Sarma, P. Datta, Nanosci. Nanotechnol. Lett. 2, 261–265 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the University of Sulaimani for providing the financial support for this work. The authors gratefully acknowledge the Kurdistan Institution for Strategic Studies and Scientific Research for the facility in their laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omed Gh. Abdullah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, O.G., Tahir, D.A. & Kadir, K. Optical and structural investigation of synthesized PVA/PbS nanocomposites. J Mater Sci: Mater Electron 26, 6939–6944 (2015). https://doi.org/10.1007/s10854-015-3312-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3312-9

Keywords

Navigation