Skip to main content
Log in

High-temperature thermal conductivity of biomorphic SiC/Si ceramics

Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thermal conductivity of biomorphic SiC/Si, a silicon carbide + silicon containing two phase material, was evaluated using the laser steady-state heat flux method. These materials were processed via silicon melt infiltration of wood-derived carbon scaffolds. In this approach, heat flux was measured through the thickness when one side of the specimen was heated with a 10.6-µm CO2 laser. A thin mullite layer was applied to the heated surface to ensure absorption and minimize reflection losses, as well as to ensure a consistent emissivity to facilitate radiative loss corrections. The influence of the mullite layer was accounted for in the thermal conductivity calculations. The effect of microstructure and composition (inherited from the wood carbonaceous performs) on measured conductivity was evaluated. To establish a baseline for comparison, a dense, commercially available sintered SiC ceramic was also evaluated. It was observed that at a given temperature, thermal conductivity falls between that of single-crystal silicon and fine-grained polycrystalline SiC and can be rationalized in terms of the SiC volume fraction in biomorphic SiC/Si material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Greil P, Lifka T, Kaindl A (1998) Biomorphic cellular silicon carbide ceramics from wood: I. Processing and microstructure. J Eur Ceram Soc 18:1961–1973

    Article  Google Scholar 

  2. de Arellano-Lopez AR, Martinez-Fernandez J, Gonzalez P, Dominguez C, Fernandez-Quero V, Singh M (2004) Biomorphic SiC: a new engineering ceramic material. Int J Appl Ceram Technol 1:56–67

    Article  Google Scholar 

  3. Varela-Feria FM, Ramirez-Rico J, de Arellano-Lopez AR, Martinez-Fernandez J, Singh M (2008) Reaction-formation mechanisms and microstructure evolution of biomorphic SiC. J Mater Sci 43:933–941. doi:10.1007/s10853-007-2207-4

    Article  Google Scholar 

  4. Singh M (2002) Ecoceramics: ceramics from wood. Adv Mater Process 160:39–41

    Google Scholar 

  5. Singh M, Martinez-Fernandez J, de Arellano-Lopez AR (2003) Environmentally conscious ceramics (ecoceramics) from natural wood precursors. Curr Opin Solid State Mater Sci 7:247–254

    Article  Google Scholar 

  6. Singh M, Yee BM (2004) Reactive processing of environmentally conscious, biomorphic ceramics from natural wood precursors. J Eur Ceram Soc 24:209–217

    Article  Google Scholar 

  7. Torres-Raya C, Hernandez-Maldonado D, Ramirez-Rico J, Garcia-Ganan C, de Arellano-Lopez AR, Martinez-Fernandez J (2008) Fabrication, chemical etching, and compressive strength of porous biomimetic SiC for medical implants. J Mater Res 23:3247–3254

    Article  Google Scholar 

  8. Wilkes TE, Young ML, Sepulveda RE, Dunand DC, Faber KT (2006) Composites by aluminum infiltration of porous silicon carbide derived from wood precursors. Scr Mater 55:1083–1086

    Article  Google Scholar 

  9. Pappacena KE, Johnson MT, Xie S, Faber KT (2010) Processing of wood-derived copper–silicon carbide composites via electrodeposition. Compos Sci Technol 70:485–491

    Article  Google Scholar 

  10. Arzac GM, Ramirez-Rico J, Gutierrez-Pardo A, de Haro MCJ, Hufschmidt D, Martinez-Fernandez J, Fernandez A (2016) Monolithic supports based on biomorphic SiC for the catalytic combustion of hydrogen. RSC Adv 6:66373–66384

    Article  Google Scholar 

  11. Wang Q, Sun WZ, Jin GQ, Wang YY, Guo XY (2008) Biomorphic SiC pellets as catalyst support for partial oxidation of methane to syngas. Appl Catal B Environ 79:307–312

    Article  Google Scholar 

  12. Church TL, Fallani S, Liu J, Zhao M, Harris AT (2012) Novel biomorphic Ni/SiC catalysts that enhance cellulose conversion to hydrogen. Catal Today 190:98–106

    Article  Google Scholar 

  13. Alonso-Farinas B, Lupion M, Rodriguez-Galan M, Martinez-Fernandez J (2013) New candle prototype for hot gas filtration industrial applications. Fuel 114:120–127

    Article  Google Scholar 

  14. Gomez-Martin A, Orihuela MP, Becerra JA, Martinez-Fernandez J, Ramirez-Rico J (2016) Permeability and mechanical integrity of porous biomorphic SiC ceramics for application as hot-gas filters. Mater Des 107:450–460

    Article  Google Scholar 

  15. Filardo G, Kon E, Tampieri A, Cabezas-Rodriguez R, Di Martino A, Fini M, Giavaresi G, Lelli M, Martinez-Fernandez J, Martini L, Ramirez-Rico J, Salamanna F, Sandri M, Sprio S, Marcacci M (2014) New bio-ceramization processes applied to vegetable hierarchical structures for bone regeneration: an experimental model in sheep. Tissue Eng A 20:763–773

    Google Scholar 

  16. Gryshkov O, Klyui NI, Temchenko VP, Kyselov VS, Chatterjee A, Belyaev AE, Lauterboeck L, Iarmolenko D, Glasmacher B (2016) Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants. Mater Sci Eng C Mater Biol Appl 68:143–152

    Article  Google Scholar 

  17. Pappacena KE, Faber KT, Wang H, Porter WD (2007) Thermal conductivity of porous silicon carbide derived from wood precursors. J Am Ceram Soc 90:2855–2862

    Article  Google Scholar 

  18. Pappacena KE, Johnson MT, Wang H, Porter WD, Faber KT (2010) Thermal properties of wood-derived copper–silicon carbide composites fabricated via electrodeposition. Compos Sci Technol 70:478–484

    Article  Google Scholar 

  19. Behrens E (1968) Thermal conductivities of composite materials. J Compos Mater 2:2–17

    Article  Google Scholar 

  20. Gomez-Martin A, Orihuela MP, Ramirez-Rico J, Chacartegui R, Martinez-Fernandez J (2016) Thermal conductivity of porous biomorphic SiC derived from wood precursors. Ceram Int 42:16220–16229

    Article  Google Scholar 

  21. Parfen’eva LS, Orlova TS, Kartenko NF, Sharenkova NV, Smirnov BI, Smirnov IA, Misiorek H, Jezowski A, Varela-Feria FM, Martinez-Fernandez J, de Arellano-Lopez AR (2005) Thermal conductivity of the SiC/Si biomorphic composite, a new cellular ecoceramic. Phys Solid State 47:1216–1220

    Article  Google Scholar 

  22. Parfen’eva LS, Orlova TS, Smirnov BI, Smirnov IA, Misiorek H, Mucha J, Jezowski A, de Arellano-Lopez AR, Martinez-Fernandez J, Varela-Feria FM (2006) Anisotropy of the thermal conductivity and electrical resistivity of the SiC/Si biomorphic composite based on a white-eucalyptus biocarbon template. Phys Solid State 48:2281–2288

    Article  Google Scholar 

  23. Parfen’eva LS, Smirnov BI, Smirnov IA, Misiorek H, Mucha J, Jezowski A, de Arellano-Lopez AR, Martinez-Fernandez J, Sepulveda R (2007) Thermal conductivity of bio-SiC and the Si embedded in cellular pores of the SiC/Si biomorphic composite. Phys Solid State 49:211–214

    Article  Google Scholar 

  24. Parfen’eva L, Orlova T, Kartenko N, Sharenkova N, Smirnov B, Smirnov I, Misiorek H, Jezowski A, Wilkes T, Faber K (2008) Thermal conductivity of high-porosity biocarbon precursors of white pine wood. Phys Solid State 50:2245–2255

    Article  Google Scholar 

  25. Parfen’eva LS, Orlova TS, Smirnov BI, Smirnov IA, Misiorek H, Mucha J, Jezowski A, Cabezas-Rodriguez R, Ramirez-Rico J (2012) Thermal conductivity of high-porosity heavily doped biomorphic silicon carbide prepared from sapele wood biocarbon. Phys Solid State 54:1732–1739

    Article  Google Scholar 

  26. Zhu DM, Miller RA, Nagaraj BA, Bruce RW (2001) Thermal conductivity of EB-PVD thermal barrier coatings evaluated by a steady-state laser heat flow technique. Surf Coat Technol 138:1–8

    Article  Google Scholar 

  27. Zhu DM, Bansal NP, Lee KN, Miller RA (2001) Current status of environmental barrier coatings for Si-based ceramics. In: Krenkel W, Naslain R, Schneider H (eds) High temperature ceramic matrix composites. Wiley-VCH, Weinheim

    Google Scholar 

  28. Zhu DM, Miller RA (2005) Thermal conductivity. DESTech Publications, Lancaster

    Google Scholar 

  29. Bauer W, Moldenhauer A, Platzer A (2005) Emissivities of ceramic materials for high temperature processes. In: Optics and photonics. International Society for Optics and Photonics

  30. Baukal CE Jr. (2000) Heat transfer in industrial combustion. CRC Press, Boca Raton

    Book  Google Scholar 

  31. Touloukian YS, DeWitt D (1972) DTIC Document

  32. Burzo MG, Komarov PL, Raad PE (2003) Thermal transport properties of gold-covered thin-film silicon dioxide. IEEE Trans Compon Packag Technol 26:80–88

    Article  Google Scholar 

  33. Collins AK, Pickering MA, Taylor RL (1990) Grain-size dependence of the thermal-conductivity of polycrystalline chemical vapor-deposited beta-sic at low-temperatures. J Appl Phys 68:6510–6512

    Article  Google Scholar 

  34. Liu DM, Lin BW (1996) Thermal conductivity in hot-pressed silicon carbide. Ceram Int 22:407–414

    Article  Google Scholar 

  35. Pickering MA, Taylor RL, Keeley JT, Graves GA (1990) Chemically vapor-deposited silicon-carbide (SiC) for optical applications. Nucl Instrum Methods A 291:95–100

    Article  Google Scholar 

  36. Price RJ (1973) Thermal-conductivity of neutron-irradiated pyrolytic beta-silicon carbide. J Nucl Mater 46:268–272

    Article  Google Scholar 

  37. Rohde M (1991) Reduction of the thermal-conductivity of SiC by radiation-damage. J Nucl Mater 182:87–92

    Article  Google Scholar 

  38. Senor DJ, Youngblood GE, Moore CE, Trimble DJ, Newsome GA, Woods JJ (1996) Effects of neutron irradiation on thermal conductivity of SiC-based composites and monolithic ceramics. Fusion Technol 30:943–955

    Google Scholar 

  39. Sigl LS (2003) Thermal conductivity of liquid phase sintered silicon carbide. J Eur Ceram Soc 23:1115–1122

    Article  Google Scholar 

  40. Slack GA (1964) Thermal conductivity of pure and impure silicon, silicon carbide and diamond. J Appl Phys 35:3460–3466

    Article  Google Scholar 

  41. Snead LL, Nozawa T, Katoh Y, Byun TS, Kondo S, Petti DA (2007) Handbook of SiC properties for fuel performance modeling. J Nucl Mater 371:329–377

    Article  Google Scholar 

  42. Glassbrenner CJ, Slack GA (1964) Thermal conductivity of silicon + germanium from 3 degrees K to melting point. Phys Rev A Gen Phys 134:1058–1069

    Article  Google Scholar 

  43. Shanks HR, Sidles PH, Maycock PD, Danielson GC (1963) Thermal conductivity of silicon from 300 to 1400 degrees K. Phys Rev 130:1743–1748

    Article  Google Scholar 

  44. Shelykh AI, Smirnov BI, Orlova TS, Smirnov IA, de Arellano-Lopez AR, Martinez-Fernandez J, Varela-Feria FM (2006) Electrical and thermoelectric properties of the SiC/Si biomorphic composite at high temperatures. Phys Solid State 48:229–232

    Article  Google Scholar 

  45. Orlova TS, Smirnov BI, de Arellano-Lopez AR, Fernandez JM, Sepulveda R (2005) Anisotropy of electric resistivity of Sapele-boased biomorphic SiC/Si composites. Phys Solid State 47:229–232

    Article  Google Scholar 

  46. Orlova TS, Il’in DV, Smirnov BI, Smirnov IA, Sepulveda R, Martinez-Fernandez J, de Arellano-Lopez AR (2007) Electrical properties of bio-SiC and Si components of the SiC/Si biomorphic composite. Phys Solid State 49:205–210

    Article  Google Scholar 

  47. Popov VV, Orlova TS, Ramirez-Rico J, de Arellano-Lopez AR, Martinez-Fernandez J (2008) Electrical properties of the SiC/Si composite and the biomorphic SiC ceramic fabricated from Spanish beech wood. Phys Solid State 50:1819–1825

    Article  Google Scholar 

  48. Orlova TS, Popov VV, Cancapa JQ, Maldonado DH, Magarino EE, Feria FMV, de Arellano AR, Fernandez JM (2011) Electrical properties of biomorphic SiC ceramics and SiC/Si composites fabricated from medium density fiberboard. J Eur Ceram Soc 31:1317–1323

    Article  Google Scholar 

  49. Srinivasan M, Seshadri S, Weber G (1980) Evaluation of slow crack growth parameters for silicon carbide ceramics. In: 82nd annual meeting of the American Ceramic Society, Chicago, IL, Carborundum Publication No. A-12

  50. Fernandez JM, Munoz A, Lopez ARD, Feria FMV, Dominguez-Rodriguez A, Singh M (2003) Microstructure-mechanical properties correlation in siliconized silicon carbide ceramics. Acta Mater 51:3259–3275

    Article  Google Scholar 

Download references

Acknowledgements

Part of this work was funded by the Spanish MINECO under Grants MAT2013-41233-R and MAT2016-76526-R, partially funded by FEDER. Electron microscopy measurements were performed at the CITIUS central services of the University of Seville.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ramírez-Rico.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez-Rico, J., Singh, M., Zhu, D. et al. High-temperature thermal conductivity of biomorphic SiC/Si ceramics. J Mater Sci 52, 10038–10046 (2017). https://doi.org/10.1007/s10853-017-1199-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1199-y

Keywords

Navigation