Skip to main content
Log in

Structural, thermal and antibacterial properties of polyamide 11/polymeric biocide polyhexamethylene guanidine dodecylbenzenesulfonate composites

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

An Erratum to this article was published on 05 July 2016

Abstract

Antimicrobial polyamide 11 (PA-11) films containing low-cost, thermally stable and water resistant polymeric biocide polyhexamethylene guanidine dodecylbenzenesulfonate (PHMG-DBS) have been obtained by compression moulding. The structure of the modified PA-11 films containing from 3 to 10 wt% of PHMG-DBS was characterized using Raman and FTIR spectroscopy and atomic force microscopy (AFM). The surface properties were evaluated both by contact angle and contactless inductive method. The introduction of PHMG-DBS into PA-11 films was found to increase positive surface charge density to 5.5·10−11 C/cm2 for 10 wt% of PHMG-DBS. Antibacterial activity of PA-11/PHMG-DBS films against both Gram-positive (Escherichia coli) and Gram-negative (Bacillus subtilis) bacteria was demonstrated for films containing from 5 to 7 wt% of polymeric biocide. According to thermal investigations data, PA-11/PHMG-DBS composite has excellent thermal stability to at least 390 °C both in air and in argon atmosphere which indicates on its availability for the melt processing by common methods. It has also been found that polymeric biocide is highly resistant to leaching from PA-11 film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Kohan MI (1995) Nylon Plastics Handbook. Hanser Gardner Publications, New York

    Google Scholar 

  2. Arkema (2005) RILSAN® PA11: created from a renewable source (product data sheet). Arkema, Puteaux

  3. Mason J (1998) Pipe liners for corrosive high-temperature oil and gas-production applications. Mater Perform 37:34–40

    Google Scholar 

  4. Dawans FA, Jarrin J, Lefevre TO, Pelisson M (1986) Improved thermoplastic materials for offshore flexible pipes. In: Proceedings of Offshore Technology Conference, OTC No. 5231-MS, Houston

  5. Arkema (2010) Fine powders: a durable coating for durable products (product data sheet). Arkema, Colombes

  6. Klun U, Friedrich Z, Kržan A (2003) Polyamide 6 fibre degradation by a lignolytic fungus. Polym Degrad Stab 79:99–104

    Article  Google Scholar 

  7. Tomita K, Ikeda N, Ueno A (2003) Isolation and characterization of a thermophilic bacterium, Geobacillus thermocatenulatus, degrading nylon 12 and nylon 66. Biotechnol Lett 25:1743–1746

    Article  Google Scholar 

  8. Mohee R, Unmar G (2007) Determining biodegradability of plastic materials under controlled and natural composting environments. Waste Manag 27:1486–1493

    Article  Google Scholar 

  9. Al-Gelawi MH, Al-Saraf AA, Al-Baldawi RB (2013) Role of plasmid of Pseudomonas putida S3A in Nylon 6 degradation. J Biol Sci 13:555–558

    Article  Google Scholar 

  10. Chonde Sonal G, Chonde Sachin G, Raut PD (2013) Studies on degradation of synthetic polymer Nylon 6 and Nylon 6, 6 by Pseudomonas aeruginosa NCIM 2242. IJETCAS 4:362–369

    Google Scholar 

  11. Kaali P, Strömberg E, Karlsson S (2011) Prevention of biofilm associated infections and degradation of polymeric materials used in biomedical applications. In: Laskovski AN (ed) Biomedical engineering, trends in material science, vol Chapter 22. In Tech, Rijeka, pp 513–541

    Google Scholar 

  12. Ramachandran T, Rajendrakumar K, Rajendran R (2004) Antimicrobial textiles—an overview. Textile Eng 84:42–47

    Google Scholar 

  13. Nichols D (2005) Biocides in plastics. Rapra review reports, Rapra Technology, 15: Report 180

  14. Kuratsuji T, Shimizu H (2003) Polyamide based antibacterial powder paint composition. US Patent 20030171452

  15. Lapeyre A, Ganset C (2005) Polyamide-based powder and its use for obtaining an antibacterial coating. US Patent 8303970

  16. Russel AD, Hugo WB (1994) Antimicrobial activity and action of silver. Prog Med Chem 31:351–370

    Article  Google Scholar 

  17. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668

    Article  Google Scholar 

  18. Kumar R, Münstedt H (2005) Silver ion release from antimicrobial polyamide/silver composites. Biomater 26:2081–2088

    Article  Google Scholar 

  19. Damm C, Münstedt H, Rösch A (2007) Long-term antimicrobial polyamide 6/silver-nanocomposites. J Mater Sci 42:6067–6073

    Article  Google Scholar 

  20. Damm C, Münstedt H, Rösch A (2008) The antimicrobial efficacy of polyamide 6/silver-nano- and microcomposites. Mater Chem Phys 108:61–66

    Article  Google Scholar 

  21. Williams RL, Doherty PJ, Vince DJ, Grashoff GJ, Williams DF (1989) The biocompatibility of silver. Crit Rev Biocompat 5:221–223

    Google Scholar 

  22. Carmona-Ribeiro AM, de Melo Carrasco LD (2013) Cationic antimicrobial polymers and their assemblies. Int J Mol Sci 14:9906–9946

    Article  Google Scholar 

  23. Oulè MK, Azinwi R, Bernier AM, Kablan T, Maupertuis AM, Mauler S, Koffi- Nevry R, Dembèlè K, Forbes L, Diop L (2008) Polyhexamethylene guanidine hydrochloride-based disinfectant: a novel tool to fight meticillin-resistant Staphylococcus aureus and nosocomial infections. J Med Microbiol 57:1523–1528

    Article  Google Scholar 

  24. Mathurin YK, Koffi-Nevry R, Guéhi ST, Tano K, Oulé MK (2012) Antimicrobial activities of polyhexamethylene guanidine hydrochloride-based disinfectant against fungi isolated from cocoa beans and reference strains of bacteria. J Food Protect 75:1167–1171

    Article  Google Scholar 

  25. Qian L, Guan Y, He B, Xiao H (2008) Modified guanidine polymers: synthesis and antimicrobial mechanism revealed by AFM. Polymer 49:2471–2475

    Article  Google Scholar 

  26. Zhou Z, Wei D, Guan Y, Zheng A, Zhong J-J (2010) Damage of Escherichia coli membrane by bactericidal agent polyhexamethylene guanidine hydrochloride: micrographic evidences. J Appl Microbiol 108:898–907

    Article  Google Scholar 

  27. Zhou Z, Wei D, Guan Y, Zheng A, Zhong J-J (2011) Extensive in vitro activity of guanidine hydrochloride polymer analogs against antibiotics-resistant clinically isolated strains. Mater Sci Eng 31:1836–1843

    Article  Google Scholar 

  28. Kukharenko O, Bardeau J-F, Zaets I, Ovcharenko L, Tarasyuk O, Porhyn S, Mischenko I, Vovk A, Rogalsky S, Kozyrovska N (2014) Promising low cost antimicrobial composite material based on bacterial cellulose and polyhexamethylene guanidine hydrochloride. Eur Polym Jnl 60:247–254

    Article  Google Scholar 

  29. Nigmatullin R, Gao F, Konovalova V (2009) Permanent, non-leaching antimicrobial polyamide nanocomposites based on organoclays modified with a cationic polymer. Macromol Mater Eng 294:795–805

    Article  Google Scholar 

  30. Rogalskyy S, Bardeau J-F, Tarasyuk O, Fatyeyeva K (2012) Fabrication of new antifungal polyamide-12 material. Polym Int 61:686–691

    Article  Google Scholar 

  31. Faille C, Jullien C, Fontaine F, Bellon-Fontaine M-N, Slomianny C, Benezech T (2002) Adhesion of Bacillus spores and Escherichia coli cells to inert surfaces: role of surface hydrophobicity. Can J Microbiol 48:728–738

    Article  Google Scholar 

  32. Haghi AK, Zaikov GE (2013) Updates on polymer composites and fibers for advanced technologies. In: Zaikov GE, Lekishvili NG, Medvedevskikh YJ (eds) Multicomponent polymeric materials: from introduction to application. Apple Academic Press Inc, Point Pleasant, pp 169–173

    Google Scholar 

  33. Sedin VA, Yarovoi GP (1971) Measurement of surface charge and external field potential of an electret. Meas Tech 14:439–443

    Article  Google Scholar 

  34. Fatyeyeva K, Pud AA, Bardeau J-F, Tabellout M (2011) Structure–property relationship in aliphatic polyamide/polyaniline surface layered composites. Mater Chem Phys 130:760–768

    Article  Google Scholar 

  35. Marmur A (2006) Soft contact: measurement and interpretation of contact angles. Soft Matter 2:12–17

    Article  Google Scholar 

  36. An YH, Friedman RJ (1998) Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res 43:338–348

    Article  Google Scholar 

  37. Kügler R, Bouloussa O, Rondelez F (2005) Evidence of a charge-density threshold for optimum efficiency of biocidal cationic surfaces. Microbiology 151:1341–1348

    Article  Google Scholar 

  38. Lewis K, Klibanov AM (2005) Surpassing nature: rational design of sterile-surface materials. Trends Biotechnol 23:343–348

    Article  Google Scholar 

  39. Siedenbiedel F, Tiller JC (2012) Antimicrobial polymers in solution and on surfaces: overview and functional principles. Polymers 4:46–71

    Article  Google Scholar 

  40. Izmaylov B, Di Gioia D, Markova G, Aloisio I, Colonna M, Vasnev V (2015) Imidazolium salts grafted on cotton fibres for long-term antimicrobial activity. React Funct Polym 87:22–28

    Article  Google Scholar 

  41. Guo N, Hu D, Wang H, Wang R, Xiong Y (2013) Functional poly(ethylene terephthalate) materials prepared by condensation copolymerization with ionic liquids. Polym Bull 70:3031–3040

    Article  Google Scholar 

  42. Walczak M, Richert A, Burkowska-But A (2014) The effect of polyhexamethylene guanidine hydrochloride (PHMG) derivatives introduced into polylactide (PLA) on the activity of bacterial enzymes. J Ind Microbiol Biotechnol 41:1719–1724

    Article  Google Scholar 

  43. Gilbert P, Moore LE (2005) Cationic antiseptics: diversity of action under a common epithet. J Appl Microbiol 99:703–715

    Article  Google Scholar 

  44. Lee JC, Koo JH, Ezekoye OA, Erickson K (2009) Heating rate and nanoparticle loading effects on thermoplastic polyurethane elastomer nanocomposite kinetics. 41st AIAA Thermophysics Conference, San Antonio, Texas

  45. Lyon RE, Walters RA (2002) A microscale combustion calorimeter, final report DOT/FAA/AR-01/117. NTIS, Springfield

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Arkema (USA) for providing PA-11 samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergiy Rogalsky.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 321 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogalsky, S., Bardeau, JF., Wu, H. et al. Structural, thermal and antibacterial properties of polyamide 11/polymeric biocide polyhexamethylene guanidine dodecylbenzenesulfonate composites. J Mater Sci 51, 7716–7730 (2016). https://doi.org/10.1007/s10853-016-0054-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0054-x

Keywords

Navigation