Skip to main content
Log in

Aluminum hydroxide multilayer assembly capable of extinguishing flame on polyurethane foam

  • 50th Anniversary
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polyurethane foam found in household furnishings and bedding creates a severe fire hazard, resulting in loss of life and property each year. In an effort to reduce the flammability of polyurethane foam, a polyelectrolyte multilayer (PEM) coating, comprised of polyethylenimine and polyacrylic acid-stabilized aluminum hydroxide (ATH), was deposited onto foam using layer-by-layer (LbL) assembly. PEM coatings with and without incorporation of ATH were deposited and compared to assess the effectiveness of ATH on flame suppression. All recipes resulted in conformal coatings, maintaining the open cellular structure of the foam. Only three bilayers of PEI/PAA-ATH retained the shape of foam after exposure to a butane torch flame for 10 s. With six bilayers, the flame was extinguished, which prevented flashover. Cone calorimetry revealed that this 6 BL coated foam exhibited a 64 % reduction in peak heat release rate and a 44 % reduction in maximum average rate of heat emission. This work demonstrates an extraordinarily effective flame-retardant nanocoating that uses environmentally benign chemistry and relatively few deposition steps, prepared using LbL assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Karter MJ (2013) Fire loss in the United States during 2012. National Fire Protection Association, Quincy

    Google Scholar 

  2. Hull TR, Kandola BK (2009) Fire retardancy of polymers: new strategies and mechanisms. R Soc Chem, London

    Google Scholar 

  3. Babrauskas V, Blum A, Daley R, Birnbaum L (2011) Flame retardants in furniture foam: benefits and risks. Fire Saf Sci 10:265–278

    Article  Google Scholar 

  4. Grand AF, Wilkie CA (2000) Fire retardancy of polymeric materials. CRC Press, Boca Raton

    Google Scholar 

  5. Watanabe I, S-i Sakai (2003) Environmental release and behavior of brominated flame retardants. Environ Int 29:665–682

    Article  Google Scholar 

  6. Renner R (2004) Government Watch: EPA won’t regulate dioxin in sewage sludge. Environ Sci Technol 38:14–15

    Google Scholar 

  7. Wolska A, Goździkiewicz M, Ryszkowska J (2012) Thermal and mechanical behaviour of flexible polyurethane foams modified with graphite and phosphorous fillers. J Mater Sci 47:5627–5634. doi:10.1007/s10853-012-6433-z

    Article  Google Scholar 

  8. Gavgani J, Adelnia H, Gudarzi M (2014) Intumescent flame retardant polyurethane/reduced graphene oxide composites with improved mechanical, thermal, and barrier properties. J Mater Sci 49:243–254. doi:10.1007/s10853-013-7698-6

    Article  Google Scholar 

  9. Cain AA, Nolen CR, Li Y-C, Davis R, Grunlan JC (2013) Phosphorous-filled nanobrick wall multilayer thin film eliminates polyurethane melt dripping and reduces heat release associated with fire. Polym Degrad Stab 98:2645–2652

    Article  Google Scholar 

  10. Kim YS, Davis R (2014) Multi-walled carbon nanotube layer-by-layer coatings with a trilayer structure to reduce foam flammability. Thin Solid Films 550:184–189

    Article  Google Scholar 

  11. Kim YS, Li Y-C, Pitts WM, Werrel M, Davis RD (2014) Rapid growing clay coatings to reduce the fire threat of furniture. ACS Appl Mater Interfaces 6:2146–2152

    Article  Google Scholar 

  12. Laufer G, Kirkland C, Cain AA, Grunlan JC (2012) Clay-chitosan nanobrick walls: completely renewable gas barrier and flame-retardant nanocoatings. ACS Appl Mater Interfaces 4:1643–1649

    Article  Google Scholar 

  13. Laufer G, Kirkland C, Morgan AB, Grunlan JC (2013) Exceptionally flame retardant sulfur-based multilayer nanocoating for polyurethane prepared from aqueous polyelectrolyte solutions. Acs Macro Lett 2:361–365

    Article  Google Scholar 

  14. Patra D, Vangal P, Cain AA, Cho C, Regev O, Grunlan JC (2014) Inorganic nanoparticle thin film that suppresses flammability of polyurethane with only a single electrostatically-assembled bilayer. ACS Appl Mater Interfaces 6:16903–16908

    Article  Google Scholar 

  15. Carosio F, Di Blasio A, Cuttica F, Alongi J, Malucelli G (2014) Self-assembled hybrid nanoarchitectures deposited on poly(urethane) foams capable of chemically adapting to extreme heat. Rsc Advances 4:16674–16680

    Article  Google Scholar 

  16. Thirumal M, Khastgir D, Nando GB, Naik YP, Singha NK (2010) Halogen-free flame retardant PUF: effect of melamine compounds on mechanical, thermal and flame retardant properties. Polym Degrad Stab 95:1138–1145

    Article  Google Scholar 

  17. Holder KM, Huff ME, Cosio MN, Grunlan JC (2015) Intumescing multilayer thin film deposited on clay-based nanobrick wall to produce self-extinguishing flame retardant polyurethane. J Mater Sci 50:2451–2458. doi:10.1007/s10853-014-8800-4

    Article  Google Scholar 

  18. Carosio F, Di Blasio A, Alongi J, Malucelli G (2013) Green DNA-based flame retardant coatings assembled through Layer by Layer. Polymer 54:5148–5153

    Article  Google Scholar 

  19. Guin T, Krecker M, Milhorn A, Grunlan JC (2014) Maintaining hand and improving fire resistance of cotton fabric through ultrasonication rinsing of multilayer nanocoating. Cellulose 21:3023–3030

    Article  Google Scholar 

  20. Huang G, Yang J, Gao J, Wang X (2012) Thin Films of Intumescent Flame Retardant-Polyacrylamide and Exfoliated Graphene Oxide Fabricated via Layer-by-Layer Assembly for Improving Flame Retardant Properties of Cotton Fabric. Ind Eng Chem Res 51:12355–12366

    Google Scholar 

  21. Laufer G, Kirkland C, Morgan AB, Grunlan JC (2012) intumescent multilayer nanocoating, made with renewable polyelectrolytes, for flame-retardant cotton. Biomacromolecules 13:2843–2848

    Article  Google Scholar 

  22. Li Y-C, Mannen S, Morgan AB, Chang S, Yang Y-H, Condon B, Grunlan JC (2011) Intumescent all-polymer multilayer nanocoating capable of extinguishing flame on fabric. Adv Mater 23:3926–3931

    Article  Google Scholar 

  23. Alongi J, Carosio F, Malucelli G (2012) Layer by layer complex architectures based on ammonium polyphosphate, chitosan and silica on polyester-cotton blends: flammability and combustion behaviour. Cellulose 19:1041–1050

    Article  Google Scholar 

  24. Dubas ST, Kumlangdudsana P, Potiyaraj P (2006) Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloids and Surfaces a-Physicochemical and Engineering Aspects 289:105–109

    Article  Google Scholar 

  25. Apaydin K, Laachachi A, Ball V, Jimenez M, Bourbigot S, Toniazzo V, Ruch D (2013) Polyallylamine-montmorillonite as super flame retardant coating assemblies by layer-by layer deposition on polyamide. Polym Degrad Stab 98:627–634

    Article  Google Scholar 

  26. Apaydin K, Laachachi A, Ball V, Jimenez M, Bourbigot S, Toniazzo V, Ruch D (2014) Intumescent coating of (polyallylamine-polyphosphates) deposited on polyamide fabrics via layer-by-layer technique. Polym Degrad Stab 106:158–164

    Article  Google Scholar 

  27. Carosio F, Di Blasio A, Cuttica F, Alongi J, Frache A, Malucelli G (2013) Flame retardancy of polyester fabrics treated by spray-assisted layer-by-layer silica architectures. Ind Eng Chem Res 52:9544–9550

    Article  Google Scholar 

  28. Decher G, Schlenoff JB (2012) Multilayer thin films: sequential assembly of nanocomposite materials, 2nd edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  29. Hammond PT (2004) Form and function in multilayer assembly: new applications at the nanoscale. Adv Mater 16:1271–1293

    Article  Google Scholar 

  30. Ai H, Gao J (2004) Size-controlled polyelectrolyte nanocapsules via layer-by-layer self-assembly. J Mater Sci 39:1429–1432. doi:10.1023/B:JMSC.0000013910.63194.db

    Article  Google Scholar 

  31. Aulin C, Karabulut E, Amy T, Wagberg L, Lindstrom T (2013) Transparent nanocellulosic multilayer thin films on polylactic acid with tunable gas barrier properties. Acs Applied Materials & Interfaces 5:7352–7359

    Article  Google Scholar 

  32. Lichter JA, Van Vliet KJ, Rubner MF (2009) Design of antibacterial surfaces and interfaces: polyelectrolyte multilayers as a multifunctional platform. Macromolecules 42:8573–8586

    Article  Google Scholar 

  33. Yang Y-H, Haile M, Park YT, Malek FA, Grunlan JC (2011) Super gas barrier of all-polymer multilayer thin films. Macromolecules 44:1450–1459

    Article  Google Scholar 

  34. Hao W, Pan F, Wang T (2005) Photocatalytic activity TiO2 granular films prepared by layer-by-layer self-assembly method. J Mater Sci 40:1251–1253. doi:10.1007/s10853-005-6945-x

    Article  Google Scholar 

  35. Carosio F, Laufer G, Alongi J, Camino G, Grunlan JC (2011) Layer-by-layer assembly of silica-based flame retardant thin film on PET fabric. Polym Degrad Stab 96:745–750

    Article  Google Scholar 

  36. Chapel JP, Berret JF (2012) Versatile electrostatic assembly of nanoparticles and polyelectrolytes: coating, clustering and layer-by-layer processes. Curr Opin Colloid Interface Sci 17:97–105

    Article  Google Scholar 

  37. Srivastava S, Kotov NA (2008) Composite layer-by-layer (LBL) assembly with inorganic nanoparticles and nanowires. Acc Chem Res 41:1831–1841

    Article  Google Scholar 

  38. Xu XH, Ren GL, Cheng J, Liu Q, Li DG, Chen Q (2006) Layer by layer self-assembly immobilization of glucose oxidase onto chitosan-graft-polyaniline polymers. J Mater Sci 41:3147–3149. doi:10.1007/s10853-006-6412-3

    Article  Google Scholar 

  39. Lvov Y, Ariga K, Ichinose I, Kunitake T (1996) Molecular film assembly via layer-by-layer adsorption of oppositely charged macromolecules (linear polymer, protein and clay) and concanavalin A and glycogen. Thin Solid Films 284:797–801

    Article  Google Scholar 

  40. Hammond PT (2012) Building biomedical materials layer-by-layer. Mater Today 15:196–206

    Article  Google Scholar 

  41. Lutkenhaus JL, Hammond PT (2007) Electrochemically enabled polyelectrolyte multilayer devices: from fuel cells to sensors. Soft Matter 3:804–816

    Article  Google Scholar 

  42. Ariga K, Hill JP, Ji Q (2007) Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Physical Chemistry Chemical Physics 9:2319–2340

    Article  Google Scholar 

  43. Li Y-C, Kim YS, Shields J, Davis R (2013) Controlling polyurethane foam flammability and mechanical behaviour by tailoring the composition of clay-based multilayer nanocoatings. Journal of Materials Chemistry A 1:12987–12997

    Article  Google Scholar 

  44. Zhu J, Morgan AB, Lamelas FJ, Wilkie CA (2001) Fire properties of polystyrene-clay nanocomposites. Chem Mater 13:3774–3780

    Article  Google Scholar 

  45. Laachachi A, Ferriol M, Cochez M, Lopez Cuesta JM, Ruch D (2009) A comparison of the role of boehmite (AlOOH) and alumina (Al2O3) in the thermal stability and flammability of poly(methyl methacrylate). Polym Degrad Stab 94:1373–1378

    Article  Google Scholar 

  46. Kogel JE (2006) Industrial minerals and rocks: commodities, markets, and uses. Society for Mining, Littleton

    Google Scholar 

  47. Lvov YM, Pattekari P, Zhang X, Torchilin V (2011) Converting poorly soluble materials into stable aqueous nanocolloids. Langmuir 27:1212–1217

    Article  Google Scholar 

  48. Kim D, Tzeng P, Barnett KJ, Yang Y-H, Wilhite BA, Grunlan JC (2014) Highly size-selective ionically crosslinked multilayer polymer films for light gas separation. Adv Mater 26:746–751

    Article  Google Scholar 

  49. Kashiwagi T, Shields JR, Harris RH, Davis RD (2003) Flame-retardant mechanism of silica: effects of resin molecular weight. J Appl Polym Sci 87:1541–1553

    Article  Google Scholar 

  50. Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta JM, Dubois P (2009) New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Materials Science & Engineering R-Reports 63:100–125

    Article  Google Scholar 

  51. Jiao L, Xiao H, Wang Q, Sun J (2013) Thermal degradation characteristics of rigid polyurethane foam and the volatile products analysis with TG-FTIR-MS. Polym Degrad Stab 98:2687–2696

    Article  Google Scholar 

  52. Morgan AB, Liu W (2011) Flammability of thermoplastic carbon nanofiber nanocomposites. Fire Mater 35:43–60

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr. Alexander Morgan at the University of Dayton Research Institute for cone calorimeter testing and helpful discussions. The authors further acknowledge the Texas A&M Engineering Experiment Station (TEES) and the Microscopy and Imaging Center (MIC) for infrastructural support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime C. Grunlan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2503 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haile, M., Fomete, S., Lopez, I.D. et al. Aluminum hydroxide multilayer assembly capable of extinguishing flame on polyurethane foam. J Mater Sci 51, 375–381 (2016). https://doi.org/10.1007/s10853-015-9258-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9258-8

Keywords

Navigation