Skip to main content
Log in

BiFeO3 thin films via aqueous solution deposition: a study of phase formation and stabilization

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper reports a thorough microstructural investigation of bismuth ferrite (BFO) thin films subjected to various processing conditions and discusses their influence on the stability of the BiFeO3 perovskite phase. The formation of secondary phases in BFO thin films is studied as a function of annealing temperature and time, film thickness, Bi excess, and Ti substitution. While films annealed at 600 °C consist of the desired BiFeO3 phase, higher temperatures induce the decomposition leading to a significant amount of secondary phases, particularly the iron-rich Bi2Fe4O9 phase. A longer annealing time at 700 °C further enhances the decomposition of BiFeO3. Qualitative microstructural analysis of the films is performed by electron backscattered diffraction which provides phase analysis of individual grains. The morphology of the single-crystalline Bi2Fe4O9 grains that are embedded in the BiFeO3 matrix drastically changes as a function of the film thickness. Nucleation of these Bi2Fe4O9 grains probably occurs at the film/substrate interface, after which grain growth continues toward the surface of the film through the depletion of the BFO phase. Addition of Bi excess or the substitution of Fe with Ti in the precursor solutions significantly reduces the formation of an iron-rich secondary phase. Influence of the secondary phases as well as Ti substitution on magnetic properties of BFO films was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Catalan G, Scott JF (2009) Physics and applications of bismuth ferrite. Adv Mater 21(24):2463–2485. doi:10.1002/adma.200802849

    Article  Google Scholar 

  2. Arnold DC, Knight KS, Morrison FD, Lightfoot P (2009) Ferroelectric-paraelectric transition in BiFeO3: crystal structure of the orthorhombic beta phase. Phys Rev Lett 102(2):027602. doi:10.1103/PhysRevLett.102.027602

    Article  Google Scholar 

  3. Selbach SM, Tybell T, Einarsrud MA, Grande T (2008) The ferroic phase transitions of BiFeO3. Adv Mater 20(19):3692–3696. doi:10.1002/adma.200800218

    Article  Google Scholar 

  4. Palewicz A, Przenioslo R, Sosnowska I, Hewat AW (2007) Atomic displacements in BiFeO3 as a function of temperature: neutron diffraction study. Acta Crystallogr Sect B-Struct Sci 63:537–544. doi:10.1107/s0108768107023956

    Article  Google Scholar 

  5. Achenbac GD, James WJ, Gerson R (1967) Preparation of single-phase polycrystalline BiFeO3. J Am Ceram Soc 50(8):437. doi:10.1111/j.1151-2916.1967.tb15153.x

    Article  Google Scholar 

  6. Selbach SM, Einarsrud MA, Grande T (2009) On the thermodynamic stability of BiFeO3. Chem Mater 21(1):169–173. doi:10.1021/cm802607p

    Article  Google Scholar 

  7. Valant M, Axelsson AK, Alford N (2007) Peculiarities of a solid-state synthesis of multiferroic polycrystalline BiFeO3. Chem Mater 19(22):5431–5436. doi:10.1021/cm071730+

    Article  Google Scholar 

  8. Morozov MI, Lomanova NA, Gusarov VV (2003) Specific features of BiFeO3 formation in a mixture of bismuth(III) and iron(III) oxides. Russ J Gen Chem 73(11):1676–1680. doi:10.1023/b:rugc.0000018640.30953.70

    Article  Google Scholar 

  9. Bea H, Bibes M, Fusil S, Bouzehouane K, Jacquet E, Rode K, Bencok P, Barthelemy A (2006) Investigation on the origin of the magnetic moment of BiFeO3 thin films by advanced X-ray characterizations. Phys Rev B 74(2):020101–020104. doi:10.1103/PhysRevB.74.020101

    Article  Google Scholar 

  10. Filip’ev VS, Smolyaninov NP, Fesenko EG, Belyaev IN (1960) Synthesis of BiFeO3 and determination of the unit cell. Kristallografiya 5(6):958

    Google Scholar 

  11. Selbach SM, Tybell T, Einarsrud MA, Grande T (2010) Phase transitions, electrical conductivity and chemical stability of BiFeO3 at high temperatures. J Solid State Chem 183(5):1205–1208. doi:10.1016/j.jssc.2010.03.014

    Article  Google Scholar 

  12. Palai R, Katiyar RS, Schmid H, Tissot P, Clark SJ, Robertson J, Redfern SAT, Catalan G, Scott JF (2008) Beta phase and gamma-beta metal-insulator transition in multiferroic BiFeO3. Phys Rev B 77(1):014110–014120. doi:10.1103/PhysRevB.77.014110

    Article  Google Scholar 

  13. Maitre A, Francois M, Gachon JC (2004) Experimental study of the Bi2O3-Fe2O3 pseudo-binary system. J Phase Equilib Diffus 25(1):59–67. doi:10.1361/10549710417687

    Article  Google Scholar 

  14. Rojac T, Bencan A, Malic B, Tutuncu G, Jones JL, Daniels JE, Damjanovic D (2014) BiFeO3 ceramics: processing, electrical, and electromechanical properties. J Am Ceram Soc 97(7):1993–2011. doi:10.1111/jace.12982

    Article  Google Scholar 

  15. Bucci JD, Robertso BK, James WJ (1972) Precision determination of lattice parameters and coefficients of thermal expansion of BiFeO3. J Appl Crystallogr 5(JUN1):187–191. doi:10.1107/s0021889872009173

    Article  Google Scholar 

  16. Rojac T, Kosec M, Budic B, Setter N, Damjanovic D (2010) Strong ferroelectric domain-wall pinning in BiFeO3 ceramics. J Appl Phys 108(7):174107–174114. doi:10.1063/1.3490249

    Article  Google Scholar 

  17. Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Liu B, Viehland D, Vaithyanathan V, Schlom DG, Waghmare UV, Spaldin NA, Rabe KM, Wuttig M, Ramesh R (2003) Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299(5613):1719–1722. doi:10.1126/science.1080615

    Article  Google Scholar 

  18. Bea H, Bibes M, Barthelemy A, Bouzehouane K, Jacquet E, Khodan A, Contour JP, Fusil S, Wyczisk F, Forget A, Lebeugle D, Colson D, Viret M (2005) Influence of parasitic phases on the properties of BiFeO3 epitaxial thin films. Appl Phys Lett 87(7):072508–072510. doi:10.1063/1.2009808

    Article  Google Scholar 

  19. Ihlefeld JF, Kumar A, Gopalan V, Schlom DG, Chen YB, Pan XQ, Heeg T, Schubert J, Ke X, Schiffer P, Orenstein J, Martin LW, Chu YH, Ramesh R (2007) Adsorption-controlled molecular-beam epitaxial growth of BiFeO3. Appl Phys Lett 91(7):071922–071924. doi:10.1063/1.2767771

    Article  Google Scholar 

  20. Das RR, Kim DM, Baek SH, Eom CB, Zavaliche F, Yang SY, Ramesh R, Chen YB, Pan XQ, Ke X, Rzchowski MS, Streiffer SK (2006) Synthesis and ferroelectric properties of epitaxial BiFeO3 thin films grown by sputtering. Appl Phys Lett 88(24):242904–242906. doi:10.1063/1.2213347

    Article  Google Scholar 

  21. Zheng R, Gao X, Wang J, Ramakrishna S (2008) Multiferroic BiFeO3 thin films buffered by a SrRuO3 layer. J Am Ceram Soc 91(2):463–466. doi:10.1111/j.1551-2916.2007.02128.x

    Article  Google Scholar 

  22. Lee CC, Wu LJ, Wu JM (2007) Studies on forming gas annealing treated BiFeO3 thin films and capacitors. Appl Phys Lett 91(20):202902–202904. doi:10.1063/1.2806191

    Article  Google Scholar 

  23. Yang SY, Zavaliche F, Mohaddes-Ardabili L, Vaithyanathan V, Schlom DG, Lee YJ, Chu YH, Cruz MP, Zhan Q, Zhao T, Ramesh R (2005) Metalorganic chemical vapor deposition of lead-free ferroelectric BiFeO3 films for memory applications. Appl Phys Lett 87(10):102903–102905. doi:10.1063/1.2041830

    Article  Google Scholar 

  24. Wang Y, Jiang QH, He HC, Nan CW (2006) Multiferroic BiFeO3 thin films prepared via a simple sol-gel method. Appl Phys Lett 88(14):142503–142505. doi:10.1063/1.2191947

    Article  Google Scholar 

  25. Qi XD, Dho JH, Blamire M, Jia QX, Lee JS, Foltyn S, MacManus-Driscoll JL (2004) Epitaxial growth of BiFeO3 thin films by LPE and sol-gel methods. J Magn Magn Mater 283(2–3):415–421. doi:10.1016/j.jmmm.2004.06.014

    Article  Google Scholar 

  26. Singh SK, Kim YK, Funakubo H, Ishiwara H (2006) Epitaxial BiFeO3 thin films fabricated by chemical solution deposition. Appl Phys Lett 88(16):162904–162906. doi:10.1063/1.2196477

    Article  Google Scholar 

  27. Casper MD, Losego MD, Maria JP (2013) Optimizing phase and microstructure of chemical solution-deposited bismuth ferrite (BiFeO3) thin films to reduce DC leakage. J Mater Sci 48(4):1578–1584. doi:10.1007/s10853-012-6914-0

    Article  Google Scholar 

  28. Tyholdt F, Jorgensen S, Fjellvag H, Gunnaes AE (2005) Synthesis of oriented BiFeO3 thin films by chemical solution deposition: phase, texture, and microstructural development. J Mater Res 20(8):2127–2139. doi:10.1577/jmr.2005.0263

    Article  Google Scholar 

  29. Yakovlev S, Zekonyte J, Solterbeck CH, Es-Souni M (2005) Interfacial effects on the electrical properties of multiferroic BiFeO3/Pt/Si thin film heterostructures. Thin Solid Films 493(1–2):24–29. doi:10.1016/j.tsf.2005.06.020

    Article  Google Scholar 

  30. Liu KH, Cai W, Fu CL, Lei K, Xiang L, Gong XB (2014) Preparation and electric properties of BiFeO3 film by electrophoretic deposition. J Alloys Compd 605:21–28. doi:10.1016/j.jallcom.2014.03.161

    Article  Google Scholar 

  31. Toupet H, Le Marrec F, Holc J, Kosec M, Vilarhino P, Karkut MG (2009) Growth and thermal stability of epitaxial BiFeO3 thin films. J Magn Magn Mater 321(11):1702–1705. doi:10.1016/j.jmmm.2009.02.024

    Article  Google Scholar 

  32. Fujino S, Murakami M, Lim SH, Wuttig M, Salamanca-Riba LG, Takeuchi I (2007) Ferroelectric properties of multiphase Bi-Fe-O thin films. Solid State Ion 178(21–22):1257–1261. doi:10.1016/j.ssi.2007.07.004

    Article  Google Scholar 

  33. Calzada ML, Gonzalez A, Garcia-Lopez J, Jimenez R (2003) Crystallization, heterostructure, microstructure, and properties of ferroelectric strontium bismuth tantalate films derived from tantalum glycolate solutions. Chem Mater 15(25):4775–4783. doi:10.1021/cm031065e

    Article  Google Scholar 

  34. Schwartz RW (1997) Chemical solution deposition of perovskite thin films. Chem Mater 9(11):2325–2340. doi:10.1021/cm970286f

    Article  Google Scholar 

  35. Hardy A, Gielis S, Van den Rul H, D’Haen J, Van Bael MK, Mullens J (2009) Effects of precursor chemistry and thermal treatment conditions on obtaining phase pure bismuth ferrite from aqueous gel precursors. J Eur Ceram Soc 29(14):3007–3013. doi:10.1016/j.jeurceramsoc.2009.05.018

    Article  Google Scholar 

  36. Hardy A, D’Haen J, Van Bael MK, Mullens J (2007) An aqueous solution-gel citratoperoxo-Ti(IV) precursor: synthesis, gelation, thermo-oxidative decomposition and oxide crystallization. J Sol-Gel Sci Technol 44(1):65–74. doi:10.1007/s10971-007-1601-3

    Article  Google Scholar 

  37. Van Bael MK, Nelis D, Hardy A, Mondelaers D, Van Werde K, D’Haen J, Vanhoyland G, Van den Rul H, Mullens J, Van Poucke LC, Frederix F, Wouters DJ (2002) Aqueous chemical solution deposition of ferroelectric thin films. Integr Ferroelectr 45:113–122. doi:10.1080/10584580190044010

    Article  Google Scholar 

  38. Schwartz RW, Schneller T, Waser R (2004) Chemical solution deposition of electronic oxide films. CR Chim 7(5):433–461. doi:10.1016/j.crci.2004.01.007

    Article  Google Scholar 

  39. Calzada ML, Jimenez R, Gonzalez A, Garcia-Lopez J, Leinen D, Rodriguez-Castellon E (2005) Interfacial phases and electrical characteristics of ferroelectric strontium bismuth tantalate films on Pt/TiO2 and Ti/Pt/Ti heterostructure electrodes. Chem Mater 17(6):1441–1449. doi:10.1021/cm048996q

    Article  Google Scholar 

  40. Stojakovic D (2012) Electron backscatter diffraction in materials characterization. Process Appl Ceram 6(1):1–13

    Article  Google Scholar 

  41. Tyholdt F, Fjellvag H, Gunnaes AE, Olsen A (2007) Synthesis of epitaxial BiFeO3 films by chemical solution deposition on Pt(100). J Appl Phys 102(7):074108–074114. doi:10.1063/1.2784999

    Article  Google Scholar 

  42. Okamoto H (1991) The Bi-Pt (Bismuth-Platinum) system. J Phase Equilib 12(2):207–210. doi:10.1007/BF02645718

    Article  Google Scholar 

  43. Bretos I, Jimenez R, Rodriguez-Castellon E, Garcia-Lopez J, Calzada ML (2008) Heterostructure and compositional depth profile of low-temperature processed lead titanate-based ferroelectric thin films prepared by photochemical solution deposition. Chem Mater 20(4):1443–1450. doi:10.1021/cm7025812

    Article  Google Scholar 

  44. Dippel AC, Schneller T, Waser R, Park D, Mayer J (2010) Formation sequence of lead platinum interfacial phases in chemical solution deposition derived Pb(Zr1−x Ti x )O3 thin films. Chem Mater 22(23):6209–6211. doi:10.1021/cm101195t

    Article  Google Scholar 

  45. Zhang X, Bourgeois L, Yao J, Wang H, Webley PA (2007) Tuning the morphology of bismuth ferrite nano- and microcrystals: from sheets to fibers. Small 3(9):1523–1528. doi:10.1002/smll.200700182

    Article  Google Scholar 

  46. Han JT, Huang YH, Wu XJ, Wu CL, Wei W, Peng B, Huang W, Goodenough JB (2006) Tunable synthesis of bismuth ferrites with various morphologies. Adv Mater 18(16):2145–2148. doi:10.1002/adma.200600072

    Article  Google Scholar 

  47. Ruan QJ, Zhang WD (2009) Tunable morphology of Bi2Fe4O9 crystals for photocatalytic oxidation. J Phys Chem C 113(10):4168–4173. doi:10.1021/jp810098f

    Article  Google Scholar 

  48. Tsai CJ, Yang CY, Liao YC, Chueh YL (2012) Hydrothermally grown bismuth ferrites: controllable phases and morphologies in a mixed KOH/NaOH mineralizer. J Mater Chem 22(34):17432–17436. doi:10.1039/c2jm33859a

    Article  Google Scholar 

  49. Hu ZT, Chen B, Lim TT (2014) Single-crystalline Bi2Fe4O9 synthesized by low-temperature co-precipitation: performance as photo- and Fenton catalysts. RSC Adv 4(53):27820–27829. doi:10.1039/c4ra02555e

    Article  Google Scholar 

  50. Zhang XY, Lv J, Bourgeois L, Cui JW, Wu YC, Wang HT, Webley PA (2011) Formation and photocatalytic properties of bismuth ferrite submicrocrystals with tunable morphologies. New J Chem 35(4):937–941. doi:10.1039/c1nj00008j

    Article  Google Scholar 

  51. Lahmar A, Zhao K, Habouti S, Dietze M, Solterbeck CH, Es-Souni M (2011) Off-stoichiometry effects on BiFeO3 thin films. Solid State Ion 202(1):1–5. doi:10.1016/j.ssi.2011.03.017

    Article  Google Scholar 

  52. Singh SK, Funakuba H, Uchida H, Ishiwara H (2005) Structural and electrical properties of BiFeO3 thin films. Integr Ferroelectr 76:139–146. doi:10.1080/10584580500413855

    Article  Google Scholar 

  53. Kalantari K, Sterianou I, Karimi S, Ferrarelli MC, Miao S, Sinclair DC, Reaney IM (2011) Ti-doping to reduce conductivity in Bi0.85Nd0.15FeO3 ceramics. Adv Funct Mater 21(19):3737–3743. doi:10.1002/adfm.201100191

    Article  Google Scholar 

  54. Yasui S, Uchida H, Nakaki H, Nishida K, Funakubo H, Koda S (2007) Analysis for crystal structure of Bi(Fe, Sc)O3 thin films and their electrical properties. Appl Phys Lett 91(2):022906–022908. doi:10.1063/1.2756356

    Article  Google Scholar 

  55. Chung CF, Lin JP, Wu JM (2006) Influence of Mn and Nb dopants on electric properties of chemical-solution-deposited BiFeO3 films. Appl Phys Lett 88(24):242909–242911. doi:10.1063/1.2214138

    Article  Google Scholar 

  56. Do D, Kim JW, Kim SS (2011) Effects of Dy and Mn codoping on ferroelectric properties of BiFeO3 thin films. J Am Ceram Soc 94(9):2792–2795. doi:10.1111/j.1551-2916.2011.04720.x

    Article  Google Scholar 

  57. Yan F, Lai MO, Lu L, Zhu TJ (2010) Enhanced multiferroic properties and valence effect of Ru-doped BiFeO3 thin films. J Phys Chem C 114(15):6994–6998. doi:10.1021/jp1009127

    Article  Google Scholar 

  58. Khomchenko VA, Kiselev DA, Kopcewicz M, Maglione M, Shvartsman VV, Borisov P, Kleemann W, Lopes AML, Pogorelov YG, Araujo JP, Rubinger RM, Sobolev NA, Vieira JM, Kholkin AL (2009) Doping strategies for increased performance in BiFeO3. J Magn Magn Mater 321(11):1692–1698. doi:10.1016/j.jmmm.2009.02.008

    Article  Google Scholar 

  59. Wu JG, Wang J (2010) Ferroelectric and impedance behavior of La- and Ti-codoped BiFeO3 thin films. J Am Ceram Soc 93(9):2795–2803. doi:10.1111/j.1551-2916.2010.03816.x

    Article  Google Scholar 

  60. Bernardo MS, Jardiel T, Peiteado M, Caballero AC, Villegas M (2011) Sintering and microstructural characterization of W6+, Nb5+ and Ti4+ iron-substituted BiFeO3. J Alloys Compd 509(26):7290–7296. doi:10.1016/j.jallcom.2011.04.087

    Article  Google Scholar 

  61. Bernardo MS, Jardiel T, Peiteado M, Mompean FJ, Garcia-Hernandez M, Garcia MA, Villegas M, Caballero AC (2013) Intrinsic compositional inhomogeneities in bulk Ti-doped BiFeO3: microstructure development and multiferroic properties. Chem Mater 25(9):1533–1541. doi:10.1021/cm303743h

    Article  Google Scholar 

  62. Wang Y, Nan CW (2006) Enhanced ferroelectricity in Ti-doped multiferroic BiFeO3 thin films. Appl Phys Lett 89(5):052903–052905. doi:10.1063/1.2222242

    Article  Google Scholar 

  63. Zheng CD, Yu J, Zhang DM, Yang B, Wu YY, Wang LH, Wang YB, Zhou WL (2007) Processing and ferroelectric properties of Ti-doped BiFeO3 ceramics. Integr Ferroelectr 94:31–36. doi:10.1080/10584580701755872

    Article  Google Scholar 

  64. Hu GD, Fan SH, Yang CH, Wu WB (2008) Low leakage current and enhanced ferroelectric properties of Ti and Zn codoped BiFeO3 thin film. Appl Phys Lett 92(19):192905–192907. doi:10.1063/1.2918130

    Article  Google Scholar 

  65. Chan HM, Harmer MP, Smyth DM (1986) Compensating defects in highly donor-doped BaTiO3. J Am Ceram Soc 69(6):507–510. doi:10.1111/j.1151-2916.1986.tb07453.x

    Article  Google Scholar 

  66. Bernardo MS, Jardiel T, Peiteado M, Caballero AC, Villegas M (2011) Reaction pathways in the solid state synthesis of multiferroic BiFeO3. J Eur Ceram Soc 31(16):3047–3053. doi:10.1016/j.jeurceramsoc.2011.03.018

    Article  Google Scholar 

  67. Bea H, Bibes M, Petit S, Kreisel J, Barthelemy A (2007) Structural distortion and magnetism of BiFeO3 epitaxial thin films: a Raman spectroscopy and neutron diffraction study. Philos Mag Lett 87(3–4):165–174. doi:10.1080/09500830701235802

    Article  Google Scholar 

  68. Ederer C, Spaldin NA (2005) Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys Rev B 71(6):060401–060404. doi:10.1103/PhysRevB.71.060401

    Article  Google Scholar 

  69. Tian ZM, Yuan SL, Wang XL, Zheng XF, Yin SY, Wang CH, Liu L (2009) Size effect on magnetic and ferroelectric properties in Bi2Fe4O9 multiferroic ceramics. J Appl Phys 106(10):103912–103915. doi:10.1063/1.3259392

    Article  Google Scholar 

  70. Murari NM, Thomas R, Melgarejo RE, Pavunny SP, Katiyar RS (2009) Structural, electrical, and magnetic properties of chemical solution deposited BiFe1−x Ti x O3 and BiFe0.9Ti0.05Co0.05O3 thin films. J Appl Phys 106(1):014103–014107. doi:10.1063/1.3158556

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank the support from Research Foundation Flanders (FWO Vlaanderen—research project G 0394.14 N.) and KU Leuven Concerted Research Action (GOA 14/007). C. De Dobbelaere is a postdoctoral research fellow of the Research Foundation Flanders. We also acknowledge Bart Ruttens (Institute for Materials Research, UHasselt) for his help with XRD and SEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolina Pavlovic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlovic, N., D’Haen, J., Modarresi, H. et al. BiFeO3 thin films via aqueous solution deposition: a study of phase formation and stabilization. J Mater Sci 50, 4463–4476 (2015). https://doi.org/10.1007/s10853-015-8987-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8987-z

Keywords

Navigation