Skip to main content
Log in

Environment segregation of Er3+ emission in bulk sol–gel-derived SiO2–SnO2 glass ceramics

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Er-doped (100-x) SiO2–x SnO2 glass–ceramic monoliths were prepared using a sol–gel method. Raman spectroscopic measurements showed the structural evolution of the silica matrix caused by the formation and the growth of SnO2 nanocrystals. Analysis of the photoluminescence properties shows that the quantity of Er3+ ions embedded in the vicinity of SnO2 nanocrystals could be controlled by the SnO2 concentration. We give spectroscopic evidence of energy transfer to erbium ions provided by SnO2 nanocrystals in the silica matrix. The 4I13/2 level decay curves present a double-exponential profile with two lifetimes associated to rare-earth ions in two different environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kolobkova EV, Lipovskii AA, Montero C, Linares J (1999) Formation and modelling of optically waveguiding structures in a high-concentration Er-doped phosphate glass. J Phys D Appl Phys 32:L9–L12

    Article  Google Scholar 

  2. Jlassi I, Elhouichet H, Ferid M, Chtourou R, Oueslati M (2010) Study of photoluminescence quenching in Er 3 + -doped tellurite glasses. Opt Mater 32:743–747

    Article  Google Scholar 

  3. Li Y, Liuu L, He Z, Tang H, Xiao S, Xu L, Wang W (2004) Improvement of Fluorescence Lifetime from Er-Doped Sol-Gel Silica Glass by Dehydration in CCl4. J. Sol-gel Sci. Techn. 30:29–33

    Article  Google Scholar 

  4. Corradi AB, Cannillo V, Montorsi M, Siligardi C (2006) Influence of Al2O3 addition on thermal and structural properties of erbium doped glasses. J Mater Sci 41:2811–2819

    Article  Google Scholar 

  5. Amarnath Reddy A, Surendra Babu S, Pradeesh K, Otton CJ, Vijaya Prakash G (2011) Optical properties of highly Er3+-doped sodium–aluminium–phosphate glasses for broadband 1.5 m emission. J Alloy Compd 509:4047–4052

    Article  Google Scholar 

  6. Miniscalco WJ (1991) Erbium-doped glasses for fiber amplifiers at 1500 nm. J Lightwave Technol 9:234–250

    Article  Google Scholar 

  7. Kik PG, Polman A (2001) Exciton–erbium energy transfer in Si nanocrystal-doped SiO2. Mater Sci Eng B-Solid 81:1–3

    Article  Google Scholar 

  8. Morais EA, Ribeiro SJL, Scalvi LVA, Santilli CV, Ruggiero LO, Pulcinelli SH, Messaddeq Y (2002) Optical characteristics of Er3+–Yb3+ doped SnO2 xerogels. J Alloys Compounds 344:217–220

    Article  Google Scholar 

  9. Chiodini N, Paleari A, Spinolo G, Chiasera A, Ferrari M, Brambilla G, Taylor ER (2002) Photosensitive erbium doped tin-silicate glass. J Non-Cryst Solids 311:217–222

    Article  Google Scholar 

  10. Brovelli S, Chiodini A, Lauria A, Meinardi F, Paleari A (2006) Energy transfer to erbium ions from wide-band-gap SnO2 nanocrystals in silica. Phys Rev B 73:4–073406

    Article  Google Scholar 

  11. Brovelli S, Chiodini N, Meinardi F, Monguzzi A, Lauria A, Lorenzi R, Vodopivec R, Mozzati MC, Paleari A (2009) Confined diffusion of erbium excitations in SnO2 nanoparticles embedded in silica: a time-resolved infrared luminescence study. Phys Rev B 79:4–153108

    Article  Google Scholar 

  12. J-del Castillo, Rodrıguez VD, Yanes AC, Mendez-Ramos J (2008) Energy transfer from the host to Er3+ dopants in semiconductor SnO2 nanocrystals segregated in sol–gel silica glasses. J Nanopart Res 10:499–506

    Article  Google Scholar 

  13. Hayakawa T, Enomoto T, Nogami M (2002) Nanocrystalline SnO2 particles and twofold-coordinated Sn defect centers in sol-gel-derived SnO2–SiO2 glasses. J Mater Res 17:1305–1311

    Article  Google Scholar 

  14. Chiodini N, Paleari A, Spinolo G, Crespi P (2003) Photorefractivity in SiO2:SnO2 glass-ceramics by visible light. J Non-Cryst Solids 322:266–271

    Article  Google Scholar 

  15. Bhaktha BNS, Kinowski C, Bouazaoui C, Capoen B, Robbe-Cristini O, Beclin F, Roussel P, Ferrari M, Turrell S (2009) Controlled Growth of SnO2 Nanocrystals in Eu3+-Doped SiO2 − SnO2 Planar Waveguides: A Spectroscopic Investigation. J Phys Chem C 113:21555–21559

    Article  Google Scholar 

  16. Okuno M, Zotov N, Schmücker M, Schneider H (2005) Structure of SiO2-Al2O3 glasses: IR and Raman studies. J Non-Cryst Solids 351:1032–1038

    Article  Google Scholar 

  17. Abello L, Bochu B, Gaskov A, Koudryavtseva S, Lucazeau G, Roumyantseva M (1998) Structural Characterization of Nanocrystalline SnO2 by X-Ray and Raman Spectroscopy. J Solid State Chem 135:78–85

    Article  Google Scholar 

  18. Gervais F, Kress W (1985) Lattice dynamics of oxides with rutile structure and instabilities at the metal-semiconductor phase transitions of NbO2 and VO2. Phys Rev B 31:4809–4814

    Article  Google Scholar 

  19. Yu KN, Xiong Y, Liu Y, Xiong C (1997) Microstructural change of nano-SnO2 grain assemblages with the annealing temperature. Phys Rev B 55:2666–2671

    Article  Google Scholar 

  20. Van Tran TT, Bui Si T, Turrell S, Capoen B, Roussel P, Bouazaoui M, Ferrari M, Cristini O, Kinowski C (2012) Controlled SnO2 nanocrystal growth in SiO2– SnO2 glass-ceramic monoliths. J Raman Spect 43:869–875

    Article  Google Scholar 

  21. Brinker CJ, Scherer GW (1990) Solgel Science: the physics and Chemistry of sol-gel processing. Acedamic Press, Waltham

    Google Scholar 

  22. Bise RT, Trevor DJ (2004) Surface absorption inmicrostructured optical fibers. P. Soc. Photo-Opt. Ins.726-3

  23. Zhang X, Hayakawa T, Nogami M (2009) Photoluminescence Properties and 5D0 Decay Analysis of LaF3:Eu3+ Nanocrystals Prepared by Using Surfactant Assist. Int J Appl Ceram Technol 2009:1–11

    Google Scholar 

  24. Péron O, Boulard B, Jestin Y, Ferrari M, Duverger-Arfuso C, Kodjikian S, Gao Y (2008) Erbium doped fluoride glass–ceramics waveguides fabricated by PVD. J Non-Cryst Solids 354:3586–3591

    Article  Google Scholar 

  25. Jestin Y, Armellini C, Chiappini A et al (2007) Erbium activated HfO2 based glass–ceramics waveguides for photonics. J Non-Cryst Solids 353:494–497

    Article  Google Scholar 

  26. Kamma I, Mbila M, Steege Gall KE, Rami Reddy B (2013) Spectroscopic characterization of erbium doped glass ceramic. Opt Mater Express 3(6):885–892

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank P. Russell (UCCS-Lille1) for his help with HTXRD measurements. This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 103.06-2012.16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran T. T. Van.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van, T.T.T., Turrell, S., Capoen, B. et al. Environment segregation of Er3+ emission in bulk sol–gel-derived SiO2–SnO2 glass ceramics. J Mater Sci 49, 8226–8233 (2014). https://doi.org/10.1007/s10853-014-8531-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8531-6

Keywords

Navigation