Skip to main content
Log in

Synthesis of iron-doped TiO2 nanoparticles by ball-milling process: the influence of process parameters on the structural, optical, magnetic, and photocatalytic properties

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Titanium dioxide (TiO2) absorbs only a small fraction of incoming sunlight in the visible region thus limiting its photocatalytic efficiency and concomitant photocatalytic ability. The large-scale application of TiO2 nanoparticles has been limited due to the need of using an ultraviolet excitation source to achieve high photocatalytic activity. The inclusion of foreign chemical elements in the TiO2 lattice can tune its band gap resulting in an absorption edge red-shifted to lower energies enhancing the photocatalytic performance in the visible region of the electromagnetic spectrum. In this research work, TiO2 nanoparticles were doped with iron powder in a planetary ball-milling system using stainless steel balls. The correlation between milling rotation speeds with structural and morphologic characteristics, optical and magnetic properties, and photocatalytic abilities of bare and Fe-doped TiO2 powders was studied and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang S, Zhu Z (2007) Effects of acidic treatment of activated carbons on dye adsorption. Dyes Pigm 75:306–314. doi:10.1016/j.dyepig.2006.06.005

    Article  Google Scholar 

  2. Hoffmann MR, Martin ST, Choi W et al (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96. doi:10.1021/cr00033a004

    Article  Google Scholar 

  3. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C 1:1–21

    Article  Google Scholar 

  4. Tong T, Zhang J, Tian B et al (2008) Preparation of Fe3+-doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation. J Hazard Mater 155:572–579. doi:10.1016/j.jhazmat.2007.11.106

    Article  Google Scholar 

  5. Kim DH, Jang JS, Goo NH et al (2009) Structural characterization and effect of dehydration on the Ni-doped titanate nanotubes. Catal Today 146:230–233. doi:10.1016/j.cattod.2009.04.007

    Article  Google Scholar 

  6. Zhu J, Zheng W, He B et al (2004) Characterization of Fe–TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water. J Mol Catal A 216:35–43. doi:10.1016/j.molcata.2004.01.008

    Article  Google Scholar 

  7. Yuan X-L, Zhang J-L, Anpo M, He D-N (2010) Synthesis of Fe3+ doped ordered mesoporous TiO2 with enhanced visible light photocatalytic activity and highly crystallized anatase wall. Res Chem Intermed 36:83–93. doi:10.1007/s11164-010-0117-6

    Article  Google Scholar 

  8. Haruta M (1997) Novel catalysis of gold deposited on metal oxides. Catal Surv Jpn 1:61–73

    Article  Google Scholar 

  9. Kitano M, Takeuchi M, Matsuoka M et al (2007) Photocatalytic water splitting using Pt-loaded visible light-responsive TiO2 thin film photocatalysts. Catal Today 120:133–138. doi:10.1016/j.cattod.2006.07.043

    Article  Google Scholar 

  10. Chatterjee D, Mahata A (2001) Photoassisted detoxification of organic pollutants on the surface modified TiO2 semiconductor particulate system. Catal Commun 2:7–9

    Google Scholar 

  11. Zhong J, Chen F, Zhang J (2010) Carbon-deposited TiO2: synthesis, characterization, and visible photocatalytic performance. J Phys Chem C 114:933–939

    Article  Google Scholar 

  12. Lu X, Tian B, Chen F, Zhang J (2010) Preparation of boron-doped TiO2 films by autoclaved-sol method at low temperature and study on their photocatalytic activity. Thin Solid Films 519:111–116. doi:10.1016/j.tsf.2010.07.071

    Article  Google Scholar 

  13. Chen YM, Zhong J, Chen F, Zhang JL (2010) Chinese J Catal 31:120–125

    Google Scholar 

  14. Serpone N, Lawless D, Disdier J, Herrmann J-M (1994) Spectroscopic, photoconductivity, and photocatalytic studies of TiO2 colloids: naked and with the lattice doped with Cr3+, Fe3+, and V5+ cations. Langmuir 10:643–652. doi:10.1021/la00015a010

    Article  Google Scholar 

  15. Karakitsou KE, Verykios XE (1993) Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage. J Phys Chem 97:1184–1189. doi:10.1021/j100108a014

    Google Scholar 

  16. Carneiro JO, Teixeira V, Portinha A et al (2005) Study of the deposition parameters and Fe-dopant effect in the photocatalytic activity of TiO2 films prepared by dc reactive magnetron sputtering. Vacuum 78:37–46. doi:10.1016/j.vacuum.2004.12.012

    Article  Google Scholar 

  17. James SL, Adams CJ, Bolm C et al (2012) Mechanochemistry: opportunities for new and cleaner synthesis. Chem Soc Rev 41:413–447. doi:10.1039/c1cs15171a

    Article  Google Scholar 

  18. Kaupp G (2009) Mechanochemistry: the varied applications of mechanical bond-breaking. CrystEngComm 11:388. doi:10.1039/b810822f

    Article  Google Scholar 

  19. Jenkins RH, Snyder RL (1996) Introduction to X-ray powder diffractometry. Wiley-Interscience, New York

    Book  Google Scholar 

  20. Spurr RA, Myers H (1957) Quantitative analysis of anatase–rutile mixtures with an X-ray diffractometer. Anal Chem 29:760–762. doi:10.1021/ac60125a006

    Article  Google Scholar 

  21. Tauc J, Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Phys Status Solidi 15:627–637

    Article  Google Scholar 

  22. Hashimoto K, Wasada K, Toukai N et al (2000) Photocatalytic oxidation of nitrogen monoxide over titanium(IV) oxide nanocrystals large size areas. J Photochem Photobiol A Chem 136:103–109. doi:10.1016/S1010-6030(00)00329-4

    Article  Google Scholar 

  23. Masterton WL, Bolocofsky D, Lee TP (1971) Ionic radii from scaled particle theory of the salt effect. J Phys Chem 75:2809–2815. doi:10.1021/j100687a017

    Google Scholar 

  24. Hunter RJ (1981) Zeta potential in colloid science. Academic Press, New York

    Google Scholar 

  25. Carneiro JO, Azevedo S, Teixeira V et al (2013) Development of photocatalytic asphalt mixtures by the deposition and volumetric incorporation of TiO2 nanoparticles. Constr Build Mater 38:594–601. doi:10.1016/j.conbuildmat.2012.09.005

    Article  Google Scholar 

  26. Pan X, Chen Y, Ma X, Zhu L (2003) Phase transformation of nanocrystalline anatase powders during high energy planetary ball milling. Trans Nonferrous Met Soc China 13:271–272

    Google Scholar 

  27. Zhou M, Yu J, Cheng B (2006) Effects of Fe-doping on the photocatalytic activity of mesoporous TiO2 powders prepared by an ultrasonic method. J Hazard Mater 137:1838–1847. doi:10.1016/j.jhazmat.2006.05.028

    Article  Google Scholar 

  28. Chen F, Zhao J, Hidaka H (2003) Highly selective deethylation of rhodamine B: adsorption and photooxidation pathways of the dye on the TiO2/SiO2 composite photocatalyst. Int J Photoenergy 5:209–217

    Article  Google Scholar 

  29. Kormann C, Bahnemann DW, Hoffmann MR (1991) Photolysis of chloroform and other organic molecules in aqueous titanium dioxide suspensions. Environ Sci Technol 25:494–500. doi:10.1021/es00015a018

    Article  Google Scholar 

  30. Jalalah M, Faisal M, Bouzid H et al (2013) Dielectric and photocatalytic properties of sulfur doped TiO2 nanoparticles prepared by ball milling. Mater Res Bull 48:3351–3356. doi:10.1016/j.materresbull.2013.05.023

    Article  Google Scholar 

  31. Valencia S, Marín JM, Restrepo G (2010) Study of the bandgap of synthesized titanium dioxide nanoparticles using the sol–gel method and a hydrothermal treatment. Open Mater Sci J 4:9–14

    Google Scholar 

  32. Kisch H, Sakthivel S, Janczarek M, Mitoraj D (2007) A low-band gap, nitrogen-modified titania visible-light photocatalyst. J Phys Chem C 111:11445–11449

    Article  Google Scholar 

  33. Venkatachalam N, Palanichamy M, Murugesan V (2007) Sol–gel preparation and characterization of nanosize TiO2: its photocatalytic performance. Mater Chem Phys 104:454–459. doi:10.1016/j.matchemphys.2007.04.003

    Google Scholar 

  34. Navio JA, Macias M, Gonzalez-Catalan M, Justo A (1992) Bulk and surface characterization of powder iron-doped titania photocatalysts. J Mater Sci 27:3036–3042. doi:10.1007/BF01154116

    Article  Google Scholar 

  35. Adán C, Bahamonde A, Fernández-García M, Martínez-Arias A (2007) Structure and activity of nanosized iron-doped anatase TiO2 catalysts for phenol photocatalytic degradation. Appl Catal B Environ 72:11–17. doi:10.1016/j.apcatb.2006.09.018

    Article  Google Scholar 

  36. Coey JMD, Venkatesan M, Fitzgerald CB (2005) Donor impurity band exchange in dilute ferromagnetic oxides. Nat Mater 4:173–179. doi:10.1038/nmat1310

    Google Scholar 

  37. Tian J, Gao H, Deng H et al (2013) Structural, magnetic and optical properties of Ni-doped TiO2 thin films deposited on silicon(100) substrates by sol–gel process. J Alloys Compd 581:318–323. doi:10.1016/j.jallcom.2013.07.105

    Article  Google Scholar 

  38. Luttrell T, Halpegamage S, Tao J et al (2014) Why is anatase a better photocatalyst than rutile? Model studies on epitaxial TiO2 films. Sci Rep 4:4043. doi:10.1038/srep04043

    Article  Google Scholar 

  39. Niu Y, Xing M, Zhang J, Tian B (2013) Visible light activated sulfur and iron co-doped TiO2 photocatalyst for the photocatalytic degradation of phenol. Catal Today 201:159–166. doi:10.1016/j.cattod.2012.04.035

    Article  Google Scholar 

  40. Shannon RD, Pask JA (1965) Kinetics of the anatase–rutile transformation. J Am Ceram Soc 48:391–398. doi:10.1111/j.1151-2916.1965.tb14774.x

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially financed by FCT—Fundação para a Ciência e Tecnologia—under the project PTDC/FIS/120412/2010: “Nanobased concepts for Innovative & Eco-sustainable constructive material’s surfaces.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. O. Carneiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carneiro, J.O., Azevedo, S., Fernandes, F. et al. Synthesis of iron-doped TiO2 nanoparticles by ball-milling process: the influence of process parameters on the structural, optical, magnetic, and photocatalytic properties. J Mater Sci 49, 7476–7488 (2014). https://doi.org/10.1007/s10853-014-8453-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8453-3

Keywords

Navigation