Skip to main content
Log in

A composite material with Poisson’s ratio tunable from positive to negative values: an experimental and numerical study

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

An Erratum to this article was published on 16 October 2013

Abstract

The Poisson’s ratio describes an extent of transverse deformation of a material when an axial strain is applied. A change of the Poisson’s ratio from positive to negative can equip a material with a set of specific properties. In this paper, a study of a composite material with a tunable Poisson’s ratio is presented. Samples of such a composite were first fabricated with two different polymers based on a composite structure proposed in our previous work using a multi-material additive-manufacturing system. Using both experimental and numerical methods, deformation mechanisms and mechanical properties of this composite material were analyzed. The obtained results demonstrate that its Poisson’s ratio can be reduced by increasing the difference in stiffness of constituent materials and turned from positive to negative when this difference is sufficiently high. Additionally, the study also validates a possible method to fabricate composites with designed structures and multi-constituent materials using additive-manufacturing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu Y, Hu H (2010) Sci Res Essays 5:1052

    Google Scholar 

  2. Prawoto Y (2012) Comp Mater Sci 58:140

    Article  CAS  Google Scholar 

  3. Lakes RS, Witt R (2002) Int J Mech Eng Educ 30:50

    Article  Google Scholar 

  4. Lakes R (1987) Science 238:551

    Article  CAS  Google Scholar 

  5. Evans KE, Alderson KL (2000) Eng Sci Educ J 9:148

    Article  Google Scholar 

  6. Evans KE, Alderson A (2000) Adv Mater 12:617

    Article  CAS  Google Scholar 

  7. Grima JN, Daphne A (2010) Phys Status Solidi (b) 248:111

    Article  Google Scholar 

  8. Soman PP, Fozdar DY, Lee JW et al (2012) Soft Matter 8:4946

    Article  CAS  Google Scholar 

  9. Olympio KR, Gandhi F (2009) J Intell Mater Syst Struct 21:1737

    Article  Google Scholar 

  10. Wang ZY, Hu H (2013) Text Res J. doi:10.1177/0040517512449051

  11. Liu Y, Hu H, Lam JKC et al (2010) Text Res J 80:856

    Article  CAS  Google Scholar 

  12. Ge Z, Hu H (2013) Text Res J 83:543

    Article  CAS  Google Scholar 

  13. Hu H, Wang Z, Liu S (2011) Text Res J 81:1493

    Article  CAS  Google Scholar 

  14. Ma Z, Bian H, Sun C et al (2010) Proceedings of the 2009 ground vehicle systems engineering and technology symposium (GVSETS) 1

  15. Scarpa F, Yates JR, Ciffo LG et al (2002) J Mech Eng Sci 216:1153

    Article  Google Scholar 

  16. Friis EA, Lakes RS, Park JB (1988) J Mater Sci 23:4406. doi:10.1007/BF00551939

    Article  CAS  Google Scholar 

  17. Alderson A, Alderson KL (2007) J Aerosp Eng 221:565

    CAS  Google Scholar 

  18. Yang W, Li Z, Shi W et al (2004) J Mater Sci 39:3269. doi:10.1023/B:JMSC.0000026928.93231.e0

    Article  CAS  Google Scholar 

  19. Kaminakis NT, Stavroulakis GE (2012) Compos B 43:2655

    Article  Google Scholar 

  20. Scarpa F, Blain S, Lew T et al (2007) Compos A 38:280

    Article  Google Scholar 

  21. Yang DU, Lee S, Huang FY (2003) Finite Elem Anal Des 39:187

    Article  Google Scholar 

  22. Mitschke H, Schwerdtfeger J, Schury F et al (2011) Adv Mater 23:2669

    Article  CAS  Google Scholar 

  23. Fozdar DY, Soman PP, Lee JW et al (2011) Adv Funct Mater 21:2712

    Article  CAS  Google Scholar 

  24. Xu B, Arias F, Brittain ST et al (1999) Adv Mater 11:1186

    Article  CAS  Google Scholar 

  25. Lakes R (1987) Science 235:1038

    Article  CAS  Google Scholar 

  26. Alderson A, Evans KE (2002) Phys Rev Lett 89:1

    Article  Google Scholar 

  27. Miller W, Ren Z, Evans KE (2012) Compos Sci Technol 72:761

    Article  CAS  Google Scholar 

  28. Miller W, Hook PB, Smith CW et al (2009) Compos Sci Technol 69:651

    Article  CAS  Google Scholar 

  29. Bertoldi K, Reis PM, Willshaw S et al (2010) Adv Mater 22:361

    Article  CAS  Google Scholar 

  30. Hou X, Hu H, Silberschmidt V (2012) Compos Sci Technol 72:1848

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank the funding support from the Research Grants Council of Hong Kong Special Administrative Region Government in the form of a GRF project (grant no. 515812).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, H., Silberschmidt, V. A composite material with Poisson’s ratio tunable from positive to negative values: an experimental and numerical study. J Mater Sci 48, 8493–8500 (2013). https://doi.org/10.1007/s10853-013-7666-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7666-1

Keywords

Navigation