Skip to main content

Advertisement

Log in

Trends in formation energies and elastic moduli of ternary and quaternary transition metal nitrides

Journal of Materials Science Aims and scope Submit manuscript

Abstract

The paper deals with characteristics of a wide range of ternary and quaternary metal nitrides (M = Ti, Zr, Hf, V, Nb or Ta) of various compositions obtained by ab initio calculations. We focus on the formation energies (E form), bulk moduli (B), shear moduli (G) and a difference of B and G from the weighted average of B and G of binary metal nitrides (∆B and ∆G). We show numerous monotonous dependencies, and identify exceptions to them. For elastic moduli of M1M2N we find that ∆B decreases (down to −19 GPa) and ∆G increases (up to 20 GPa) with increasing difference between atomic radii of M1 and M2. In parallel, low ∆B and high ∆G correspond to high E form and |E form|, respectively. E form of M1M2N increases with increasing difference between atomic radii and electronegativities of M1 and M2. The lowest E form values were observed for Ta-containing compositions, and the difference between E form of TaM1M2N and M1M2N is more significant for lower atomic radius and higher electronegativity of M1 and M2. Overall, we present trends which allow one to use fundamental arguments (such as atomic radii and electronegativities) to understand and predict which compositions form (nano)composites, which compositions form (stable) solid solutions, and which materials exhibit enhanced elastic moduli. The phenomena shown can be tested experimentally, and examined for even wider range of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mayrhofer PH, Mitterer C, Hultman L, Clemens H (2006) Prog Mater Sci 51:1032

    Article  CAS  Google Scholar 

  2. Abadias G, Koutsokeras LE, Dub SN, Tolmachova GN, Debelle A, Sauvage T, Villechaise P (2010) J Vac Sci Technol, A 28:541

    Article  CAS  Google Scholar 

  3. Holec D, Friak M, Neugebauer J, Mayrhofer PH (2012) Phys Rev B 85:064101

    Article  Google Scholar 

  4. Houska J, Klemberg-Sapieha JE, Martinu L (2009) J Phys 21:285302

    CAS  Google Scholar 

  5. Jhi SH, Ihm J, Louie SG, Cohen ML (1999) Nature 399:132

    Article  CAS  Google Scholar 

  6. PalDey S, Deevi SC (2003) Mater Sci Eng A 342:58

    Article  Google Scholar 

  7. Aouadi SM, Chladek JA, Namavar F, Finnegan N, Rohde SL (2002) J Vac Sci Technol B 20:1967

    Article  CAS  Google Scholar 

  8. Hoerling A, Sjölen J, Willmann H, Larsson T, Odén M, Hultman L (2008) Thin Solid Films 516:6421

    Article  CAS  Google Scholar 

  9. Matenoglou GM, Koutsokeras LE, Lekka CE, Abadias G, Kosmidis C, Evangelakis GA, Patsalas P (2009) Surf Coat Technol 204:911

    Article  CAS  Google Scholar 

  10. Rachbauer R, Holec D, Mayrhofer PH (2010) Appl Phys Lett 97:151901

    Article  Google Scholar 

  11. Beck U, Reiners G, Kopacz U, Jehn HA (1993) Surf Coat Technol 60:389

    Article  CAS  Google Scholar 

  12. Niu EW, Li L, Lv GH, Chen H, Li XZ, Yang XZ, Yang SZ (2008) Appl Surf Sci 254:3909

    Article  CAS  Google Scholar 

  13. Hohenberg P, Kohn W (1964) Phys Rev B 136:864

    Article  Google Scholar 

  14. Kohn W, Sham L (1965) Phys Rev A 140:1133

    Google Scholar 

  15. Giannozzi P et al. (2009) J Phys Condens Matter 21:395502, www.pwscf.org

    Google Scholar 

  16. Laasonen K, Car R, Lee C, Vanderbilt D (1991) Phys Rev B 43:6796

    Article  CAS  Google Scholar 

  17. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  18. Marzari N, Vanderbilt D, De Vita A, Payne MC (1999) Phys Rev Lett 82:3296

    Article  CAS  Google Scholar 

  19. Wei SH, Ferreira LG, Bernard JE, Zunger A (1990) Phys Rev B 42:9622

    Article  CAS  Google Scholar 

  20. Alling B, Ruban AV, Karimi A, Peil OE, Simak SI, Hultman L, Abrikosov IA (2007) Phys Rev B 75:045123

    Article  Google Scholar 

  21. Alling B, Karimi A, Abrikosov IA (2008) Surf Coat Technol 203:883

    Article  CAS  Google Scholar 

  22. Mayrhofer PH, Music D, Schneider JM (2006) J Appl Phys 100:094906

    Article  Google Scholar 

  23. Tasnadi F, Oden M, Abrikosov IA (2012) Phys Rev B 85:144112

    Article  Google Scholar 

  24. Grossman JC, Mizel A, Cote M, Cohen ML, Louie SG (1999) Phys Rev B 60:6343

    Article  CAS  Google Scholar 

  25. see e.g. www.webelements.com

  26. Abadias G, Ivashchenko VI, Belliard L, Djemia P (2012) Acta Mater 60:5601

    Article  CAS  Google Scholar 

  27. Djemia P, Benhamida M, Bouamama K, Belliard L, Faurie D, Abadias G (2013) Surf Coat Technol 215:199

    Article  CAS  Google Scholar 

  28. Holec D, Zhou L, Rachbauer R, Mayrhofer PH (2013) J Appl Phys 113:113510

    Article  Google Scholar 

  29. Patsalas P, Abadias G, Matenoglou GM, Koutsokeras LE, Lekka CE (2010) Surf Coat Technol 205:1324

    Article  CAS  Google Scholar 

  30. Pugh SF (1954) Philos Mag 45:823

    CAS  Google Scholar 

  31. Sangiovanni DG, Chirita V, Hultman L (2010) Phys Rev B 81:104107

    Article  Google Scholar 

  32. Sangiovanni DG, Hultman L, Chirita V (2011) Acta Mater 59:2121

    Article  CAS  Google Scholar 

  33. Matenoglou GM, Lekka CE, Koutsokeras LE, Karras G, Kosmidis C, Evangelakis GA, Patsalas P (2009) J Appl Phys 105:103714

    Article  Google Scholar 

  34. Rachbauer R, Holec D, Mayrhofer PH (2012) Surf Coat Technol 211:98

    Article  CAS  Google Scholar 

  35. Mehl MJ, Klein BM, Papaconstantopoulos DA (1994) Intermetallic compounds: principles and practice. Wiley, London

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Grant Agency of the Czech Republic GACR under Project No. P108/12/0393, and by the European Regional Development Fund under Project “NTIS—New Technologies for Information Society”, European Centre of Excellence, CZ.1.05/1.1.00/02.0090. Computational resources were provided by Metacentrum Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Houska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrman, V., Houska, J. Trends in formation energies and elastic moduli of ternary and quaternary transition metal nitrides. J Mater Sci 48, 7642–7651 (2013). https://doi.org/10.1007/s10853-013-7582-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7582-4

Keywords

Navigation