Skip to main content
Log in

Chemical adsorption of NiO nanostructures on nickel foam-graphene for supercapacitor applications

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Few-layer graphene was synthesized on a nickel foam template by chemical vapor deposition. The resulting three-dimensional (3D) graphene was loaded with nickel oxide nanostructures using the successive ionic layer adsorption and reaction technique. The composites were characterized and investigated as electrode material for supercapacitors. Raman spectroscopy measurements on the sample revealed that the 3D graphene consisted of mostly few layers, while X-ray diffractometry and scanning electron microscopy revealed the presence of nickel oxide. The electrochemical properties were investigated using cyclic voltammetry, electrochemical impedance spectroscopy, and potentiostatic charge–discharge in aqueous KOH electrolyte. The novelty of this study is the use of the 3D porous cell structure of the nickel foam which allows for the growth of highly conductive graphene and subsequently provides support for uniform adsorption of the NiO onto the graphene. The NF-G/NiO electrode material showed excellent properties as a pseudocapacitive device with a high-specific capacitance value of 783 F g−1 at a scan rate of 2 mV s−1. The device also exhibited excellent cycle stability, with 84 % retention of the initial capacitance after 1000 cycles. The results demonstrate that composites made using 3D graphene are versatile and show considerable promise as electrode materials for supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academia/Plenum, New York

    Book  Google Scholar 

  2. Kotz R, Carlen M (2000) Electrochim Acta 45:2483

    Article  CAS  Google Scholar 

  3. Zaho X, Sánchez BM, Dobson PJ, Grant PS (2011) Nanoscale 3:839

    Article  Google Scholar 

  4. Hall PJ, Mirzaeian M, Fletcher SI, Sillars FB, Rennie AJR, Shitta-Bey GO, Wilson G, Cruden A, Carter R (2010) Energy Environ Sci 3:1238

    Article  CAS  Google Scholar 

  5. Frackowiak E (2007) Phys Chem Chem Phys 9:1774

    Article  CAS  Google Scholar 

  6. Burke A (2007) Electrochim Acta 53:1083

    Article  CAS  Google Scholar 

  7. Frackowiak E, Benguin F (2001) Carbon 39:937

    Article  CAS  Google Scholar 

  8. Simon P, Gogotsi Y (2008) Nat Mater 7:845

    Article  CAS  Google Scholar 

  9. Zhang LL, Zhao XS (2009) Chem Soc Rev 38:2520

    Article  CAS  Google Scholar 

  10. Geim AK, Novoselov KS (2007) Nat Mater 6:183

    Article  CAS  Google Scholar 

  11. Katsnelson MI (2007) Mater Today 10:20

    Article  CAS  Google Scholar 

  12. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2004) Science 306:666

    Article  CAS  Google Scholar 

  13. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Nano Lett 810:3498

    Article  Google Scholar 

  14. Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen YS (2009) J Phys Chem C 113:13103

    Article  CAS  Google Scholar 

  15. Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Nano Lett 10:4863

    Article  CAS  Google Scholar 

  16. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Adv Mater 22:3906

    Article  CAS  Google Scholar 

  17. Sun Y, Wu Q, Shi G (2011) Energy Environ Sci 4:1113

    Article  CAS  Google Scholar 

  18. Yu DS, Dai LM (2010) J Phys Chem Lett 1:467

    Article  CAS  Google Scholar 

  19. Yuan C, Zhang X, Su L, Gao B, Shen L (2009) J Mater Chem 19:5772

    Article  CAS  Google Scholar 

  20. Xi YY, Li D, Djurisic AB, Xie MH, Man KYK, Chan WK (2008) Electrochem Solid State Lett 11:D56

    Article  CAS  Google Scholar 

  21. Konstantinov K, Wang G, Lao ZJ, Liu HK, Devers T (2009) J Nanosci Nanotech 9:1263

    Article  CAS  Google Scholar 

  22. Bi RR, Wu XL, Cao FF, Jiang LY, Guo YG, Wan LJ (2010) J Phys Chem C 114:2448

    Article  CAS  Google Scholar 

  23. Liang K, Tang X, Hu W (2012) J Mater Chem 22:11062

    Article  CAS  Google Scholar 

  24. Li J, Zhao W, Huang F, Manivannanc A, Wu N (2011) Nanoscale 3:5103

    Article  CAS  Google Scholar 

  25. Zhong W, Yun H, Xin-bo Z (2012) J Electrochem 18:151

    Google Scholar 

  26. Xia XH, Tu JP, Wang XL, Gu CD, Zhao XB (2011) J Mater Chem 21:671

    Article  CAS  Google Scholar 

  27. Xia C, Yanjun X, Ning W (2011) Sens Actuators B 153:434

    Article  Google Scholar 

  28. Zhang X, Shi W, Zhu J, Zhao W, Ma J, Mhaisalkar S, Maria TL, Yang Y, Zhang H, Hang HH, Yan Q (2010) Nano Res 9:643

    Article  Google Scholar 

  29. Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng H (2011) Nat Mater 10:424

    Article  CAS  Google Scholar 

  30. Dong X, Wang X, Wang L, Song H, Zhang H, Huang W, Chen (2012) Appl Mater Interfaces 4:3129

    Article  CAS  Google Scholar 

  31. Cao X, Shi Y, Shi W, Lu G, Huang X, Yan Q, Zhang Q, Zhang H (2011) Small 7:3163

    Article  CAS  Google Scholar 

  32. Xiaochen D, Yunfa C, Jing W, Mary BC, Lianhui W, Wei H, Chen P (2012) RSC Adv 2:4364

    Article  Google Scholar 

  33. Thandavarayan M, Xiaochen D, Peng C, Xin W (2012) J Mater Chem 22:5286

    Article  Google Scholar 

  34. Xia X, Tu J, Mai Y, Chen R, Wang X, Gu C, Zhao X (2011) J Chem Eur 17:10898

    Article  CAS  Google Scholar 

  35. Ge C, Hou Z, Zeng BH, Cao J, Liu Y, Kuan Y (2012) J Sol Gel Sci Technol 631:146

    Article  Google Scholar 

  36. Li J, Yang QM, Zhitomirsky I (2008) J Power Sour 185:1569

    Article  CAS  Google Scholar 

  37. Lokhande CD, Sankapala BR, Pathana HM, Mullerb M, Giersigb M, Tributsch H (2001) Appl Surf Sci 181:277

    Article  CAS  Google Scholar 

  38. Chung J, Myoung J, Oh J, Lim SJ (2012) Phys Chem Solids 73:535

    Article  CAS  Google Scholar 

  39. Wu M, Wang M, Jow J (2010) J Power Sour 195:3950

    Article  CAS  Google Scholar 

  40. Ferrari AC (2007) Solid State Commun 143:47

    Article  CAS  Google Scholar 

  41. Wu M, Huang C, Lin K (2009) J Power Sources 186:557

    Article  CAS  Google Scholar 

  42. Chae SJ, Güneş F, Kim KK, Kim ES, Han GH, Kim SM, Shin H, Yoon S, Choi JY, Park MH, Yang CW, Pribat D, Lee YH (2009) Adv Mater 21:2328

    Article  CAS  Google Scholar 

  43. Xing W, Li F, Yan Z, Lu GQ (2004) J Power Sour 134:324

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is based on research supported by the South African Research Chairs Initiative of the Department of Science and Technology (SARChI-DST) and the National Research Foundation (NRF). Any opinions, findings and conclusions, or recommendations expressed in this study are those of authors and therefore the NRF and DST do not accept any liability with regard thereto. AB thanks University of Pretoria and the NRF for financial support for his study. KM also thanks the NRF for a scarce-skills scholarship. We thank Dr. Patricia Forbes for supplying the nickel foams.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Manyala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bello, A., Makgopa, K., Fabiane, M. et al. Chemical adsorption of NiO nanostructures on nickel foam-graphene for supercapacitor applications. J Mater Sci 48, 6707–6712 (2013). https://doi.org/10.1007/s10853-013-7471-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7471-x

Keywords

Navigation