Skip to main content
Log in

Electronic structure, charge density, and chemical bonding properties of C11H8N2O o-methoxydicyanovinylbenzene (DIVA) single crystal

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A comprehensive theoretical density functional theory (DFT) study of the electronic crystal structure, bonding properties, electron charge density of C11H8N2O o-methoxydicyanovinylbenzene (DIVA) single crystals were performed. The exchange and correlation potential was described within a framework of the local density approximation (LDA) by Ceperley-Alder and gradient approximation (GGA) based on exchange–correlation energy optimization to calculate the total energy. In addition, we have used Engel–Vosko generalized gradient approximation (EV-GGA) and the modified Becke–Johnson potential (mBJ) for the electronic crystal structure, bonding properties, electron charge density calculations. There is systematically increasing in the energy gap from 2.25 eV (LDA), 2.34 eV (GGA), 2.50 eV (EV-GGA), 2.96 eV (mBJ). Our calculations show that this crystal possess direct energy gap. Furthermore, the electronic charge density space distribution contours in the (1 1 0) crystallographic plane clarifies the nature of chemical bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zyss J., Ledoux I., Nicoud J. F. (1994). Mole

  2. Desiraju GR (2002) Acc Chem Res 35:565

    Article  CAS  Google Scholar 

  3. Aakeroy CB, Seddon KR (1993) Chem Soc Rev 22:397

    Article  CAS  Google Scholar 

  4. Saha BK, Nangia A, Jaskolski M (2005) Cryst Eng Comm 7:355

    Article  CAS  Google Scholar 

  5. Russell VA, Etter MC, Ward MD (1994) J Am Chem Soc 116:1941

    Article  CAS  Google Scholar 

  6. Huang KS, Britton D, Etter MC, Byrn SR (1995) J Mater Chem 5:379

    Article  CAS  Google Scholar 

  7. Panunto TW, Urbanczyk-Lipkowska Z, Johnson R, Etter MC (1987) J Am Chem Soc 109:7786

    Article  CAS  Google Scholar 

  8. R. Custelcean, Chem. Commun. (Cambridge) 2008, 295

  9. Yin Z, Li Z (2006) Tetrahedron Lett 47:7875

    Article  CAS  Google Scholar 

  10. Jazbinsek M, Kwon OP, Bosshard Ch, Günter P (2008) handbook of organic electronics and photonics. In: Nalwa SH (ed), American Scientific Publishers, Los Angeles

  11. Bosshard Ch, Bösch M, Liakatas I, Jäger M, Günter P (2000) Nonlinear optical effects and materials. In: Günter P (ed), Springer, Berlin

  12. Nalwa HS, Watanabe T, Miyata S (1997) Nonlinear optics of organic molecules and polymers. In: Nalwa HS, Miyata S (eds), CRC, Boca Raton

  13. Zyss J, Oudar JL (1982) Phys Rev A 26:2028

    Article  CAS  Google Scholar 

  14. Kwon O-P, Jazbinsek M, Seo J-I, Choi E-Y, Yun H, Fabian DJ, Brunner Y, Lee S, Günter P (2009) J Chem Phys 130:134708

    Article  Google Scholar 

  15. Koch W, Holthausen MCAA (2000) Chemistry guide to density functional theory. Wiley, Weinheim

    Google Scholar 

  16. Parr RR, Yang RG (1989) Density functional theory of atoms and molecules. Oxford University Press, New York and references therein

    Google Scholar 

  17. Gao S (2003) Comput Phys Commun 153:190

    Article  CAS  Google Scholar 

  18. Schwarz K (2003) J Solid State Chem 176:319

    Article  CAS  Google Scholar 

  19. Antipin MY, Barr AT, Cardelino HB, Clark DR, Moore EC, Myers T, Penn B, Romero M, Timofeeva VMST (1997) J Phys Chem B 101:2770

    Article  CAS  Google Scholar 

  20. Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J (2001) WIEN2 K, an augmented plane wave + local orbitals program for calculating crystal properties, Karlheinz Schwarz. Techn Universitat Wien, Wien. ISBN 3-9501031-1-2

    Google Scholar 

  21. Hohenberg P, Kohn W (1964) Phys Rev B 136:864

    Article  Google Scholar 

  22. Ceperley DM, Ader BI (1980) Phys Rev Lett 45:566

    Article  CAS  Google Scholar 

  23. Perdew JP, Zunger A (1973) Phys Rev B 8:4822

    Article  Google Scholar 

  24. Perdew JP, Burke S, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  25. Engel E, Vosko SH (1993) Phys Rev B 47:13164

    Article  CAS  Google Scholar 

  26. Tran F, Blaha P (2009) Phys Rev Lett 102:226401

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported from the institutional research concept of the project CENAKVA (No. CZ.1.05/2.1.00/01.0024), the grant No. 152/2010/Z of the Grant Agency of the University of South Bohemia. The School of Materials Engineering, University Malaysia Perlis (UniMAP), Perlis, Malaysia. S.A. thanks Council of Scientific and Industrial Research (CSIR) - National Physical Laboratory for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Reshak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reshak, A.H., Kamarudin, H., Kityk, I.V. et al. Electronic structure, charge density, and chemical bonding properties of C11H8N2O o-methoxydicyanovinylbenzene (DIVA) single crystal. J Mater Sci 48, 5157–5162 (2013). https://doi.org/10.1007/s10853-013-7301-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7301-1

Keywords

Navigation