Skip to main content
Log in

Dielectric properties of BaTiO3–Bi(Zn1/2Ti1/2)O3–NaNbO3 solid solutions

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In order to develop dielectric ceramics with temperature-stable permittivity characteristics, perovskite BaTiO3–Bi(Zn1/2Ti1/2)O3–NaNbO3 ceramic solid solutions were investigated with a particular focus on effects of BaTiO3 and NaNbO3 contents on the dielectric properties of ternary compounds. Keeping the ratios of the other two constituents constant, decreasing the BaTiO3 content leads to a broadening of the temperature-dependent permittivity maximum and a decrease in the overall permittivity. For compositions of constant BaTiO3 content, replacing Bi(Zn1/2Ti1/2)O3 with NaNbO3 shifts the temperature of the maximum permittivity to lower temperatures (e.g., to −103 °C for a composition of 70BT–5BZT–25NN) while maintaining a broad permittivity peak with temperature, which for the 50BT–25BZT–25NN composition also satisfies the X9R standard. Thus, the investigation of BT–BZT–NN compounds resulted in promising dielectric properties with broad temperature ranges of high permittivity, which is of interest for advanced capacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nittala K, Brennecka GL, Tuttle BA, Jones JL (2011) J Mater Sci 46:2148. doi:10.1007/s10853-010-5051-x

    Article  CAS  Google Scholar 

  2. Guerra JDS, Garcia JE, Ochoa DA, Pelaiz-Barranco A, Garcia-Zaldivar O, Calderon-Pinar F (2012) J Mater Sci 47:5715. doi:10.1007/s10853-012-6461-8

    Article  CAS  Google Scholar 

  3. Wen B, Zhang Y, Liu X, Ma L, Wang X (2012) J Mater Sci 47:4299. doi:10.1007/s10853-012-6280-y

    Article  CAS  Google Scholar 

  4. Tsuzuku K, Couzi M (2012) J Mater Sci 47:4481. doi:10.1007/s10853-012-6310-9

    Article  CAS  Google Scholar 

  5. Martin-Arias L, Castro A, Alguero M (2012) J Mater Sci 47:3729. doi:10.1007/s10853-011-6222-0

    Article  CAS  Google Scholar 

  6. Huang CC, Cann DP (2008) J Appl Phys 104:024117

    Article  Google Scholar 

  7. Suchomel MR, Davies PK (2005) Appl Phys Lett 86:262905

    Article  Google Scholar 

  8. Xiong B, Hao H, Zhang S, Liu H, Cao M (2011) J Am Ceram Soc 94:3412

    Article  CAS  Google Scholar 

  9. Sun R, Wang X, Shi J, Wang L (2011) Appl Phys A 104:129

    Article  CAS  Google Scholar 

  10. Chen J, Tan X, Jo W, Rodel J (2009) J Appl Phys 106:034109

    Article  Google Scholar 

  11. Leist T, Chen J, Jo W, Aulbach E, Suffner J, Rodel J (2012) J Am Ceram Soc 95:711

    Article  CAS  Google Scholar 

  12. Fujii I, Nakashima K, Kumada N, Wada S (2012) J Ceram Soc Jpn 120:30

    Article  CAS  Google Scholar 

  13. Choi SM, Stringer CJ, Shrout TR, Randall CA (2005) J Appl Phys 98:034108

    Article  Google Scholar 

  14. Ogihara H, Randall CA, Trolier-McKinstry S (2009) J Am Ceram Soc 92:110

    Article  CAS  Google Scholar 

  15. Raengthon N, Cann DP (2012) J Electroceram 28:165

    Article  CAS  Google Scholar 

  16. Huang CC, Cann DP, Tan X, Vittayakorn N (2007) J Appl Phys 102:044103

    Article  Google Scholar 

  17. Raengthon N, Sebastian T, Cumming D, Reaney IM, Cann DP (2012) J Am Ceram Soc 95:3554. doi:10.1111/j.1551-2916.2012.05340.x

    Article  CAS  Google Scholar 

  18. Shiratori Y, Magrez A, Dornseiffer J, Haegel F, Pithan C, Waser R (2005) J Phys Chem B 109:20122

    Article  CAS  Google Scholar 

  19. Mishra SK, Choudhury N, Chaplot SL, Krishna PSR, Mittal R (2007) Phys Rev B 76:024110

    Article  Google Scholar 

  20. Zuo R, Rodel J, Chen R, Li L (2006) J Am Ceram Soc 89:2010

    Article  CAS  Google Scholar 

  21. Guo Y, Kakimoto K, Ohsato H (2005) Mater Lett 59:241

    Article  CAS  Google Scholar 

  22. Khemakhem H, Simon A, Von Der Muhll R, Ravez J (2000) J Phys Condens Matter 12:5951

    Article  CAS  Google Scholar 

  23. Huang CC, Vittayakorn N, Prasatkhetragarn A, Gibbons BJ, Cann DP (2009) Jpn J Appl Phys 48:031401

    Article  Google Scholar 

Download references

Acknowledgements

A portion of this study was supported by the Energy Storage Program managed by Dr. Imre Gyuk of the Department of Energy’s Office of Electricity Delivery and Energy Reliability. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natthaphon Raengthon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raengthon, N., Brown-Shaklee, H.J., Brennecka, G.L. et al. Dielectric properties of BaTiO3–Bi(Zn1/2Ti1/2)O3–NaNbO3 solid solutions. J Mater Sci 48, 2245–2250 (2013). https://doi.org/10.1007/s10853-012-7000-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-7000-3

Keywords

Navigation