Skip to main content
Log in

Effect of strain and grain boundaries on dielectric properties in La0.7Sr0.3MnO3 thin films

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

High dielectric constant and its dependence on structural strain and grain boundaries (GB) in La0.7Sr0.3MnO3 (LSMO) thin films are reported. X-ray diffraction, magnetization, and magneto-transport measurements of the LSMO films, made by pulsed laser deposition on two different substrates—MgO and SrTiO3 (STO), were compared to co-relate magnetic properties with dielectric properties. At room temperature, in the ferromagnetic phase of LSMO, a high dielectric constant (6 × 104) was observed up to 100 kHz frequency for the films on MgO, with polycrystalline properties and more high-angle GB related defects, while for the films on STO, with single-crystalline properties but strained unit cells, high dielectric constant (≈104) was observed until 1 MHz frequency. Also, a large dielectric relaxation time with significant broadening from the Debye single-dielectric relaxation model has been observed in samples with higher GB defects. Impedance spectroscopy further shows that large dielectric constant of the single-crystalline, strained LSMO film is intrinsic in nature while that in the polycrystalline films are mainly extrinsic due to higher amount of GBs. The presence of high dielectric constant value until high frequency range rules out the possibility of “apparent giant dielectric constant” arising from the sample-electrode interface. Coexistence of ferromagnetism and high dielectric constant can be very useful for different microelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Spearing SM (2000) Acta Mater 48:179

    Article  CAS  Google Scholar 

  2. Haertling GH (1999) J Am Ceram Soc 82:797

    Article  CAS  Google Scholar 

  3. Ramirez AP, Subramanian MA, Gardel M, Blumberg G, Li D, Vogt T, Shapiro SM (2000) Solid State Commun 115:217

    Article  CAS  Google Scholar 

  4. Homes CC, Vogt T, Shapiro SM, Wakimoto S, Ramirez AP (2001) Science 293:673

    Article  CAS  Google Scholar 

  5. Sinclair DC, Adams TB, Morrison FD, West AR (2002) Appl Phys Lett 80:2153

    Article  CAS  Google Scholar 

  6. Dagotto A, Hotta T, Moreo A (2001) Phys Rep 344:1

    Article  CAS  Google Scholar 

  7. Rao CNR, Raychaudhuri AK (1998) Colossal magnetoresistance, charge ordering and other novel properties of manganates and other related materials. World Scientific, Singapore

    Book  Google Scholar 

  8. Sahu JR, Serrao CR, Ghosh A, Sundaresan A, Rao CNR (2009) Solid State Commun 149:49

    Article  CAS  Google Scholar 

  9. Freitas RS, Mitchell JF, Schiffer P (2005) Phys Rev B 72:144429-1

    Article  Google Scholar 

  10. Serrao CR, Sundaresan A, Rao CNR (2007) J Phys Condens Matter 19:496217-1

    Article  Google Scholar 

  11. Cohn JL, Peterca M, Neumeier JJ (2005) J Appl Phys 97:034102-1

    Article  Google Scholar 

  12. Glaser A, Ziese M (2002) Phys Rev B 66:094422-1

    Article  Google Scholar 

  13. Majumdar S, Huhtinen H, Majumdar HS, Paturi P (2012) J Alloys Compd 512:332

    Article  CAS  Google Scholar 

  14. Kocks UF, Tome CN, Wenk H-R (2000) Texture and anisotropy: preferred orientations in polycrystals and their effect on materials properties. Cambridge University Press, Cambridge

    Google Scholar 

  15. Majumdar S, Huhtinen H, Majumdar HS, Laiho R, Österbacka R (2008) J Appl Phys 104:033910-1

    Google Scholar 

  16. Mott NF (1968) J Non Cryst Solids 1:1

    Article  CAS  Google Scholar 

  17. Gupta A, Gong GQ, Xiao G, Duncombe PR, Lecoeur P, Trouilloud P, Wang YY, Dravid VP, Sun JZ (1996) Phys Rev B 54:R15629

    Article  CAS  Google Scholar 

  18. Sheng Z, Nakamura M, Kagawa F, Kawasaki M, Tokura Y (2012) Nat Commun 3:944-1

    Google Scholar 

  19. Liu J, Duan C-G, Yin W-G, Mei WN, Smith RW, Hardy JR (2004) Phys Rev B 70:144106-1

    Google Scholar 

  20. Cohn JL, Peterca M, Neumeier JJ (2004) Phys Rev B 70:214433-1

    Article  Google Scholar 

  21. Seeger A, Lunkenheimer P, Hemberg J, Mukhin AA, Ivanov VYu, Balbashov AM, Loidl A (1999) J Phys Condens Matter 11:3273

    Article  CAS  Google Scholar 

  22. Debye P (1929) Polar molecules. Chemical Catalog Company, New York

    Google Scholar 

  23. Ryu J, Park D-S, Schmidt R (2011) J Appl Phys 109:113722-1

    Article  Google Scholar 

  24. Podpirka A, Ramanathan S (2011) J Appl Phys 109:014106-1

    Article  Google Scholar 

  25. Lunkenheimer P, Götzfried T, Fichtl R, Weber S, Rudolf T, Loidl A, Reller A, Ebbinghaus SG (2006) J Solid State Chem 179:3965

    Article  CAS  Google Scholar 

  26. Lunkenheimer P, Bobnar V, Pronin AV, Ritus AI, Volkov AA, Loidl A (2002) Phys Rev B 66:052105

    Article  Google Scholar 

  27. Ncville RC, Honeisen B, Mead CA (1972) J Appl Phys 43:2124

    Article  Google Scholar 

  28. Petrov PK, Carlsson EF, Larsson P, Friesel M, Ivanov ZG (1998) J Appl Phys 84:3134

    Article  CAS  Google Scholar 

  29. Kinbara H, Harigai T, Kakemoto H, Wada S, Tsurumi T (2007) IEEE Trans Ultrason Ferroelectr Freq Control 54:2541

    Article  Google Scholar 

  30. Lee JH, Chou H, Wen GH, Hwang GH (2010) J Appl Phys 107:023907-1

    Google Scholar 

  31. Rao CNR (2000) Phys Chem B 104:5877

    Article  CAS  Google Scholar 

  32. Parashar S, Sudheendra L, Raju AR, Rao CNR (2004) J Appl Phys 95:2181

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Turku Collegium for Science and Medicine (TCSM), Jenny and Antti Wihuri Foundation, University of Turku Foundation and Oskar Öflund Foundation is acknowledged for financial support. Author, H. S. Majumdar thankfully acknowledges the financial support from Academy of Finland, Center of Excellence Program (Project nr. 141115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayani Majumdar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majumdar, S., Huhtinen, H., Paturi, P. et al. Effect of strain and grain boundaries on dielectric properties in La0.7Sr0.3MnO3 thin films. J Mater Sci 48, 2115–2122 (2013). https://doi.org/10.1007/s10853-012-6986-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6986-x

Keywords

Navigation