Skip to main content

Advertisement

Log in

Using ball indentation to determine the mechanical properties of an Al-7475 alloy processed by high-pressure torsion

  • Nanostructured Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A commercial Al-7475 alloy with an initial grain size of ~40 μm was processed by high-pressure torsion (HPT) for up to 2 turns at room temperature under a pressure of 6.0 GPa. The mechanical properties of the processed materials were evaluated by the ball-indentation technique to give information on the yield strength and the ultimate tensile strength. Following HPT, microhardness measurements revealed a steady increase in the hardness values from the centers of the samples towards the edges. After 2 turns, the ultimate tensile strength was ~1050 MPa at the edge of the disk and the measured grain size was ~70 nm. The results demonstrate the potential for using HPT to achieve excellent grain refinement in the Al-7475 alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhu YT, Lowe TC, Langdon TG (2004) Scripta Mater 51:825

    Article  CAS  Google Scholar 

  2. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2006) JOM 58(4):33

    Article  Google Scholar 

  3. Zhu YT, Valiev RZ, Langdon TG, Tsuji N, Lu K (2010) MRS Bull 35:977

    Article  CAS  Google Scholar 

  4. Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881

    Article  CAS  Google Scholar 

  5. Pandey SC, Joseph MA, Pradeep MS, Raghavendra K, Ranganath VR, Venkateswarlu K, Langdon TG (2012) Mater Sci Eng 534:282

    Article  CAS  Google Scholar 

  6. Zhilyaev AP, Langdon TG (2008) Prog Mater Sci 53:893

    Article  CAS  Google Scholar 

  7. Zhilyaev AP, Kim BK, Nurislamova GV, Baró MD, Szpunar JA, Langdon TG (2002) Scripta Mater 46:575

    Article  CAS  Google Scholar 

  8. Zhilyaev AP, Nurislamova GV, Kim BK, Baró MD, Szpunar JA, Langdon TG (2003) Acta Mater 51:753

    Article  CAS  Google Scholar 

  9. Zhilyaev AP, Kim BK, Szpunar JA, Baró MD, Langdon TG (2005) Mater Sci Eng A381:377

    Google Scholar 

  10. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103

    Article  CAS  Google Scholar 

  11. Valiev R (2004) Nat Mater 3:511

    Article  CAS  Google Scholar 

  12. Kumar KS, Suresh S, Chisholm MF, Horton JA, Wang P (2003) Acta Mater 51:387

    Article  CAS  Google Scholar 

  13. Wu X, Zhu YT, Chen MW, Ma E (2006) Scripta Mater 54:1685

    Article  CAS  Google Scholar 

  14. Huang CX, Wang K, Wu SD, Zhang ZF, Li GY, Li S (2006) Acta Mater 54:655

    Article  CAS  Google Scholar 

  15. Asaro RJ, Suresh S (2005) Acta Mater 53:3369

    Article  CAS  Google Scholar 

  16. Wang YM, Hodge AM, Biener J, Hamza AV, Barnes DE, Liu K (2005) Appl Phys Lett 86:101915

    Article  Google Scholar 

  17. Hohenwarter A, Bachmaier A, Gludovatz B, Scheriau S, Pippan R (2009) Int J Mater Res 100:1653

    Article  CAS  Google Scholar 

  18. Edalati K, Horita Z (2010) J Mater Sci 45:4578. doi:10.1007/s10853-010-4381-z

    Article  CAS  Google Scholar 

  19. Koch CC (2003) Scripta Mater 49:657

    Article  CAS  Google Scholar 

  20. Zhu YT, Langdon TG (2004) JOM 56(10):58

    Article  CAS  Google Scholar 

  21. Venkateswarlu K, Das G, Pramanik AK, Xu C, Langdon TG (2006) Mater Sci Eng A427:188

    CAS  Google Scholar 

  22. Rajinikanth V, Venkateswarlu K, Sen MK, Das M, Alhajeri SN, Langdon TG (2011) Mater Sci Eng A528:1702

    CAS  Google Scholar 

  23. Venkateswarlu K, Rajinikanth V, Sen MK, Alhajeri SN, Langdon TG (2011) Mater Sci Forum 667–669:743

    Google Scholar 

  24. Figueiredo RB, Cetlin PR, Langdon TG (2011) Mater Sci Eng A528:8198

    Google Scholar 

  25. Figueiredo RB, Pereira PHR, Aguilar MTP, Cetlin PR, Langdon TG (2012) Acta Mater 60:3190

    Article  CAS  Google Scholar 

  26. Kawasaki M, Langdon TG (2008) Mater Sci Eng A498:341

    CAS  Google Scholar 

  27. Mathew MD, Murty KL, Rao KBS, Mannan SL (1999) Mater Sci Eng A264:159

    CAS  Google Scholar 

  28. Murty KL, Miraglia PQ, Mathew MD, Shah VN, Haggag FM (1999) Int J Press Vessels Pip 76:361

    Article  CAS  Google Scholar 

  29. Das G, Ghosh S, Sahay SK, Ranganath VR, Vaze KK (2004) Z Metallk 95:1120

    CAS  Google Scholar 

  30. Ghosh S, Sahay SK, Das G (2004) Trans Indian Inst Metals 57:51

    CAS  Google Scholar 

  31. Das G, Ghosh S, Sahay SK (2005) Mater Lett 59:2246

    Article  CAS  Google Scholar 

  32. Xu C, Horita Z, Langdon TG (2008) J Mater Sci 43:7286. doi:10.1007/s10853-008-2624-z

    Article  CAS  Google Scholar 

  33. Valiev RZ, Ivanisenko YV, Rauch EF, Baudelet B (1996) Acta Mater 44:4705

    Article  CAS  Google Scholar 

  34. Wetscher F, Vorhauer A, Stock R, Pippan R (2004) Mater Sci Eng A387-389:809

    Google Scholar 

  35. Wang J, Horita Z, Furukawa M, Nemoto M, Tsenev NK, Valiev RZ, Ma Y, Langdon TG (1993) J Mater Res 8:2810

    Article  CAS  Google Scholar 

  36. Wang J, Iwahashi Y, Horita Z, Furukawa M, Nemoto M, Valiev RZ, Langdon TG (1996) Acta Mater 44:2973

    Article  CAS  Google Scholar 

  37. Furukawa M, Horita Z, Nemoto M, Valiev RZ, Langdon TG (1996) Acta Mater 44:4619

    Article  CAS  Google Scholar 

  38. Horita Z, Smith DJ, Furukawa M, Nemoto M, Valiev RZ, Langdon TG (1996) J Mater Res 11:1880

    Article  CAS  Google Scholar 

  39. Furukawa M, Iwahashi Y, Horita M, Nemoto M, Tsenev NK, Valiev RZ, Langdon TG (1997) Acta Mater 45:4751

    Article  CAS  Google Scholar 

  40. Horita Z, Smith DJ, Nemoto M, Valiev RZ, Langdon TG (1998) J Mater Res 13:446

    Article  CAS  Google Scholar 

  41. Vorhauer A, Pippan R (2004) Scripta Mater 51:921

    Article  CAS  Google Scholar 

  42. Xu C, Horita Z, Langdon TG (2007) Acta Mater 55:203

    Article  CAS  Google Scholar 

  43. Xu C, Horita Z, Langdon TG (2008) Acta Mater 56:5168

    Article  CAS  Google Scholar 

  44. Edalati K, Fujioka T, Horita Z (2008) Mater Sci Eng A497:168

    CAS  Google Scholar 

  45. Loucif A, Figueiredo RB, Baudin T, Brisset F, Langdon TG (2010) Mater Sci Eng A527:4864

    CAS  Google Scholar 

  46. Duan ZC, Liao XZ, Kawasaki M, Figueiredo RB, Langdon TG (2010) J Mater Sci 45:4621. doi:10.1007/s10853-010-4400-0

    Article  CAS  Google Scholar 

  47. Edalati K, Horita Z (2010) Mater Trans 51:1051

    Article  CAS  Google Scholar 

  48. Kawasaki M, Figueiredo RB, Langdon TG (2011) Acta Mater 59:308

    Article  CAS  Google Scholar 

  49. Wongsa-Ngam J, Kawasaki M, Zhao Y, Langdon TG (2011) Mater Sci Eng A528:7715

    Google Scholar 

  50. Estrin Y, Molotnikov A, Davies CHJ, Lapovok R (2008) J Mech Phys Solids 56:1186

    Article  CAS  Google Scholar 

  51. Sabbaghianrad S, Kawasaki M, Langdon TG (2012) J Mater Sci 47:7789. doi:10.1007/s10853-012-6524-x

    Article  CAS  Google Scholar 

  52. Wongsa-Ngam J, Kawasaki M, Langdon TG (2012) J Mater Sci 47:7782. doi:10.1007/s10853-012-6587-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation of the United States under Grant No. DMR-1160966 and in part by the European Research Council under ERC Grant Agreement No. 267464-SPDMETALS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Venkateswarlu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patil, D.C., Kori, S.A., Venkateswarlu, K. et al. Using ball indentation to determine the mechanical properties of an Al-7475 alloy processed by high-pressure torsion. J Mater Sci 48, 4773–4779 (2013). https://doi.org/10.1007/s10853-012-6969-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6969-y

Keywords

Navigation