Skip to main content
Log in

Measure of morphological and performance properties in polymeric silicone foams by X-ray tomography

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the absence of nuclear weapons testing, assuring comparable material performance for replacement of no-longer-available material with modern formulations is difficult. The replacement material must completely replicate the performance of the original. Quantification of morphological characteristics in three dimensions by micro X-ray computed tomography (μCT) lends statistics and property values not otherwise achieved. This allows for the measurement of lot-to-lot, synthesis formula variations, as well as pre- and post-experimental structural changes that would be invisible to qualitative image comparison techniques. Owing to the unavailability of the original material, several novel formulations of poly(dimethylsiloxane) (PDMS) foams were imaged and quantitatively compared to aid in choosing a replacement material. In this study, bulk properties were measured with μCT including, percent void volume, average void equivalent diameter and others, and were collected for four different formulations of PDMS foams from pristine, return for service, as well as samples that were aged by gamma ray exposure. Performance characteristics (e.g., Poisson ratio) were measured and compared. From this study, we will be able to provide more information for the selection of the material that most closely matches the performance of the original material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Park H, Miwa K (2003) Mater Trans 44:2326

    Article  CAS  Google Scholar 

  2. Elmoutaouakkil A, Salvo L, Maire E, Peix G (2002) Adv Eng Mater 4:803

    Article  CAS  Google Scholar 

  3. Calvo S, Beugre D, Crine M, Leonard A, Marchot P, Toye D (2009) Chem Eng Process 48:1030

    Article  CAS  Google Scholar 

  4. Jaeggi C, Mooser R, Frauchinger V, Wyss P (2009) Mater Lett 63:2643

  5. Dudek MA, Hunter L, Kranz S, Williams JJ, Lau SH, Chawla N (2010) Mater Charact 61:433

    Article  CAS  Google Scholar 

  6. Montminy M, Tannenbaum AR, Macosko CW (2004) J Colloid Interface Sci 280:202

    Article  CAS  Google Scholar 

  7. Labouriau A, Cox JD, Schoonover JR et al (2007) Polym Degrad Stab 92:414

    Article  CAS  Google Scholar 

  8. Rutherford SW, Coons JE (2007) J Colloid Interface Sci 306:228

    Article  CAS  Google Scholar 

  9. Weber O, Rack A, Redenbach C, Schulz M, Wirjadi O (2011) J Mater Sci 46:3568. doi:10.1007/s10853-011-5270-9

  10. Lin CL, Miller JD (2005) Powder Technol 154:61

    Article  CAS  Google Scholar 

  11. Maire E, Elmoutaouakkil A, Fazekas A, Salvo L (2003) MRS Bull 28:284

    Article  CAS  Google Scholar 

  12. Viot P, Bernard D, Plougonven E (2007) J Mater Sci 42:7202. doi:10.1007/s10853-006-1422-8

    Article  CAS  Google Scholar 

  13. Roux S, Hild F, Viot P, Bernard D (2008) Compos A Appl Sci Manuf 39:1253. doi:10.1016/j.compositesa.2007.11.011

    Article  Google Scholar 

  14. Weber E, Fernandez M, Wapner P, Hoffman W (2009) Carbon 48:2151

    Article  Google Scholar 

  15. Buffière JY, Maire E, Cloetens P, Lormand G, Fougères R (1999) Acta Mater 47:1613. doi:10.1016/s1359-6454(99)00024-5

    Article  Google Scholar 

  16. Maire E, Paolo C, Jerome A, Laurent B, Biasetto L (2007) J Eur Ceram Soc 27:1973

    Article  CAS  Google Scholar 

  17. Patterson BM, Hamilton CE (2010) Anal Chem 82:8537. doi:10.1021/ac101522q

    Article  CAS  Google Scholar 

  18. Buffiere JY, Ferrie E, Proudhon H, Ludwig W (2006) Mater Sci Technol 22:1019

    Article  CAS  Google Scholar 

  19. Huang H, Eddinger SA, Schoff M (2009) Fusion Sci Technol 55:373

    CAS  Google Scholar 

  20. Freyer M, Ale A, Schulz R, Zientkowska M, Ntziachristos V, Englmeier KH (2010) J Biomed Opt 15:036006

    Article  Google Scholar 

  21. Patterson BM, Escobedo-Diaz JP, Dennis-Koller D, Cerreta EK (2012) Microsc Microanal 18:390

    Article  CAS  Google Scholar 

  22. Mader K, Marone F, Hintermuller C, Mikuljan G, Isenegger A, Stampanoni M (2011) J Synchrotron Radiat 18:117. doi:10.1107/S0909049510047370

    Article  Google Scholar 

  23. Patel M, Chinn S, Maxwell R, Wilson TS, Birdsell SA (2010) Polym Degrad Stab 95:2499

    Article  CAS  Google Scholar 

  24. Hawley ME, Wrobleski DA, Orler EB et al (2004) Mater Res Soc Symp Proc 791:93

    CAS  Google Scholar 

  25. Smith RA, Paulus M, Branning J, Phillips PJ (2001) J Cellular Plast 37:231

    Google Scholar 

  26. Gjersing E, Chinn S, Giuliani JR et al (2007) Macromolecules (Washington, DC, United States) 40:4953

  27. Brook MA (2000) Silicon in organic, organometallic, and polymer chemistry. Wiley, New York

    Google Scholar 

  28. Coons JE, McKay MD, Hamada MS (2006) Polym Degrad Stab 91:1824

    Article  CAS  Google Scholar 

  29. Blair MW, Muenchausen RE, Taylor RD, Labouriau A, Cooke DW, Stephens TS (2008) Polym Degrad Stab 93:1585

    Article  CAS  Google Scholar 

  30. Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties. Cambridge University Press, Cambridge

    Google Scholar 

  31. Pierron F, McDonald SA, Hollis D, Withers PJ, Alderson A (2011) Appl Mech Mater 70:93

    Article  CAS  Google Scholar 

  32. Poveda R, Gupta N, Porfiri M (2010) Mater Lett 64:2360

    Article  CAS  Google Scholar 

  33. BM Patterson, K Henderson, Z Smith, D Zhang, P Giguere (2012) Microsc Anal 26

  34. Horst RH, Stephens TS, Coons JE, Winter HH (2003) Rev Sci Instrum 74:4737

    Article  CAS  Google Scholar 

  35. Yoo SH, Yee L, Cohen C (2010) Polymer 51:1608. doi:10.1016/j.polymer.2010.01.067

    Article  CAS  Google Scholar 

  36. J Williams, K Yazzie, Phillips NC et al (2011) Metall Mater Trans A 42:3845. doi:10.1007/s11661-011-0963-x

  37. Williams JJ, Chapman NC, Jakkali V et al (2011) Metall Mater Trans A 42:2999

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Los Alamos National Laboratory is operated by Los Alamos National Security LLC under contract number DE-AC52-06NA25396 for the US Department of Energy. Funding for this research was provided by Campaign 2 and the Enhanced Surveillance Campaign. Mike Marsh is acknowledged for tips on the use of Avizo and Andrea Labouriau for irradiating the SX462.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian M. Patterson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patterson, B.M., Henderson, K. & Smith, Z. Measure of morphological and performance properties in polymeric silicone foams by X-ray tomography. J Mater Sci 48, 1986–1996 (2013). https://doi.org/10.1007/s10853-012-6965-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6965-2

Keywords

Navigation