Skip to main content
Log in

X-ray photoelectron spectrum, X-ray diffraction data, and electronic structure of chalcogenide quaternary sulfide Ag2In2GeS6: experiment and theory

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We report measurements of the X-ray diffraction and X-ray photoelectron spectrum on single crystals of Ag2In2GeS6. We also present first principles calculations of the band structure and density of states using the state-of-the-art full potential augmented plane wave method with different possible approximation for the exchange correlation potential. In this paper, we make a detailed comparison of the density of states deduced from the X-ray photoelectron spectra with our calculations. The theoretical results of the density of states are in reasonable agreement with the X-ray photoelectron spectroscopy (VB-XPS) measurements with respect to peak positions. The calculated density of states shows there is a strong hybridization between the states in the valence and conduction bands states. We have calculated the electron charge density distribution in the (100) and (110) planes. In the plane (100), there exists Ag, In, and S atoms, while the plane (110) Ag, S, and Ge atoms are present. The bonding properties are obtained from the charge density distributions. The calculation show that there is partial ionic and strong covalent bonding between Ag–S, In–S, and Ge–S atoms depending on Pauling electro-negativity difference of S (2.58), Ge (2.01), Ag (1.93), and In (31.78) atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References;

  1. Lekse W, Moreau MA, McNerny KL, Yeon J, Halasyamani PS, Aitken JA (2009) Inorg Chem 48:7516

    Article  CAS  Google Scholar 

  2. Lekse JW, Leverett BM, Lake CH, Aitken JA (2008) J Solid State Chem 181

  3. Matsushita H, Katsui A (2005) J Phys Chem Solids 66:1933

    Article  CAS  Google Scholar 

  4. Todorov TK, Reuter KB, Mitzi DB (2010) Adv Mater 22:E156

    Article  CAS  Google Scholar 

  5. Zhou Z, Wang Y, Xu D, Zhang Y (2010) Sol Energy Mater Sol Cells 94:2042

    Article  CAS  Google Scholar 

  6. Davydyuk GE, Myronchuk GL, Kityk IV, Danyl’chuk SP, Bozhko VV, Parasyuk OV (2011) Opt Mater 33:1302

    Article  CAS  Google Scholar 

  7. Parasyuk OV, Piskach LV, Romanyuk YE, Olekseyuk ID, Zaremba VI, Pekhnyo VI (2005) J Alloys Compd 397:85

    Article  CAS  Google Scholar 

  8. Fedorchuk AO, Gorgut GP, Parasyuk OV, Lakshminarayana G, Kityk IV, Piasecki M (2011) J Phys Chem Solids 72:1354

    Article  CAS  Google Scholar 

  9. Sachanyuk VP, Gorgut GP, Atuchin VV, Olekseyuk ID, Parasyuk OV (2008) J Alloys Compd 452:348

    Article  CAS  Google Scholar 

  10. Chmiel M, Piasecki M, Myronchuk G, Lakshminarayana G, Reshak Ali H, Parasyuk OG, Kogut Yu, Kityk IV (2012) Spectrochim Acta A 91:48

    Article  CAS  Google Scholar 

  11. Dovgii Ya O, Kityk IV (1991) Phys Stat Sol B 166:395

    Article  CAS  Google Scholar 

  12. Dovgii YO, Kityk IV (1991) Soviet Phys Semicond-USSR 25(10):1108

    Google Scholar 

  13. Dovgii YO, Kityk IV (1991) Kristallograiya 36(3):772

    CAS  Google Scholar 

  14. Dovgii YO, Kityk IV, Mankovskaya IG (1990) Fizika Tverdogo Tela 32(10):3170

    CAS  Google Scholar 

  15. Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J (2001) WIEN2K, an augmented plane wave + local orbitals program for calculating crystal properties. Karlheinz Schwarz, Techn. Universitat, Wien, ISBN 3-9501031-1-2

  16. Ceperley DM, Ader BI (1980) Phys Rev Lett 45:566–569; parametrized in Perdew J P, Zunger A Phys Rev B 8:4822–4832

  17. Ceperley DM, Ader BI (1980) Phys Rev Lett 45:566

    Article  CAS  Google Scholar 

  18. Perdew JP, Burke S, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  19. Engel E, Vosko SH (1993) Phys Rev B 47:13164

    Article  CAS  Google Scholar 

  20. Tran F, Blaha P (2009) Phys Rev Lett 102:226401

    Article  Google Scholar 

  21. Reshak AH, Stys D, Auluck S, Kamarudin H (2011) Mater Chem Phys 130:458

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported from the institutional research concept of the project CENAKVA (No. CZ.1.05/2.1.00/01.0024), the Grant No. 152/2010/Z of the Grant Agency of the University of South Bohemia. School of Material Engineering, Malaysia University of Perlis, Malaysia. SA would like to thank NPL for the J C Bose Fellowship. For I.Kityk, his work was supported by Polish National Science Centre (under Project No. 2011/01/B/ST7/06194).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Reshak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reshak, A.H., Kityk, I.V., Parasyuk, O.V. et al. X-ray photoelectron spectrum, X-ray diffraction data, and electronic structure of chalcogenide quaternary sulfide Ag2In2GeS6: experiment and theory. J Mater Sci 48, 1342–1350 (2013). https://doi.org/10.1007/s10853-012-6879-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6879-z

Keywords

Navigation