Article

Journal of Materials Science

, Volume 48, Issue 3, pp 1134-1140

First online:

Memory switching of ZnGa2Te4 thin films

  • G. B. SakrAffiliated withNano-Science Laboratory, Department of Physics, Faulty of Education, Ain Shams University
  • , S. S. FouadAffiliated withDepartment of Physics, Faulty of Education, Ain Shams University
  • , I. S. YahiaAffiliated withNano-Science Laboratory, Department of Physics, Faulty of Education, Ain Shams UniversitySemiconductor Laboratory, Department of Physics, Faulty of Education, Ain Shams UniversityDepartment of Physics, Faculty of Science, King Khalid University Email author 
  • , D. M. Abdel BassetAffiliated withDepartment of Physics, Faulty of Education, Ain Shams University

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Electrical and switching property of amorphous defect chalcopyrite ZnGa2Te4 thin films prepared by thermal evaporation technique has been studied. The elemental chemical compositions of the prepared bulk as well as the as-deposited film were determined by means of energy dispersive X-ray spectrometry. X-ray diffraction pattern revealed that the powder compound is polycrystalline and the as-deposited and the annealed films at t a ≤ 548 K have the amorphous phase, while that the annealed at t ≥ 573 K are polycrystalline with a single phase of a defect chalcopyrite structure similar to that of the synthesized material. The great advantage of this material is the capability to appear in two different phases, the amorphous and the crystalline phases, with rather different electrical properties. Both dynamic and static IV characteristics and the switching phenomenon at 601 nm are investigated. The threshold switching mechanism was explained by a thermal model of switching, i.e., joule heating with an electrically conducting channel. ZnGa2Te4 is good candidate in phase change memory device.