Skip to main content
Log in

Native point defects in binary InP semiconductors

  • First Principles Computations
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We present a holistic method to identify stable point defects in InP and the position of their defect states within the experimental band gap using density functional theory. We have calculated the formation energy of the different charge neutral native point defects for both stoichiometric and non-stoichiometric InP by determining the chemical potentials of In and P within the compound correctly from thermodynamic considerations. For stoichiometric InP, we predict phosphorous vacancies and phosphorus antisites to be most probable, among the neutral defects. For In-rich and P-rich compositions, we find indium and phosphorous antisites to be most stable, respectively, when neglecting charges. We then present a careful analysis to identify the defect levels associated with each point defect within the experimental band gap and compare it with existing experiments. By comparing calculations with different cell sizes and with varying band gaps from different exchange–correlation functionals (GGA vs. hybrid functional), we examine the dependence of the defect states on cell size and position of the excited states and analyze their nature and expected position in real systems along with the resulting charges on the defects. Finally, we include a recipe to approximate the Fermi level dependence of the chemical potential of charged defects in binary compounds, allowing calculation of their formation energies. Considering charges, the dominant point defects for stoichiometric InP are +4 and +2 charged indium and phosphorous antisites for Fermi energies <0.4 eV, +1 and +2 charged phosphorous vacancies and antisites for Fermi energies between 0.4 eV and 0.9 eV, +1 and −3 charged indium and phosphorous vacancies between 0.9 and 1.1 eV and −3 and −2 charged indium vacancies and antisites for Fermi energies >1.1 eV, respectively. For non-stoichiometric InP, the respective antisites are constitutional defects in their minimum-energy charge states, depending on the Fermi level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Beling A, Campbell JC (2009) J Lightweight Technol 27(3):343

    Article  Google Scholar 

  2. Mokkapati S, Jagadish C (2009) Mater Today 12(4):22

    Article  CAS  Google Scholar 

  3. Ko D, Zhao XW, Reddy KM, Restrepo OD, Mishra R, Beloborodov IS, Trivedi N, Padture NP, Windl W, Yang FY, Johnston-Halperin E (2011) arXiv:1106.4492

  4. Kennedy TA, Wilsey ND (1984) Appl Phys Lett 44(11):1089

    Article  CAS  Google Scholar 

  5. Jeon DY, Gislason HP, Donegan JF, Watkins GD (1987) Phys Rev B 36(2):1324

    Article  CAS  Google Scholar 

  6. Deiri M, Kanaah A, Cavenett BC, Kennedy TA, Wilsey ND (1988) Semicond Sci Technol 3(7):706

    Article  CAS  Google Scholar 

  7. Kuriyama K, Sakai K, Okada M, Yokoyama K (1995) Phys Rev B 52(20):14578

    Article  CAS  Google Scholar 

  8. Korshunov FP, Radautsan SI, Sobolev NA, Tiginyanu IM, Ursaki VV, Kudryavtseva EA (1989) Sov Phys Semicond 23(9):980

    Google Scholar 

  9. Korshunov FP, Radautsan SI, Sobolev NA, Tiginyanu IM, Kudryavtseva EA, Ursu VA, Tsyplenkov IN, Lamm VN, Sheraukhov VA (1990) Sov Phys Semicond 24(11):1263

    Google Scholar 

  10. Zhao Y, Dong Z, Miao S, Deng A, Yang J, Wang B (2006) J Appl Phys 100:123519

    Article  Google Scholar 

  11. Janardhanam V, Kumar AA, Reddy VR, Choi CJ (2011) Microelectron Eng 88:506

    Article  CAS  Google Scholar 

  12. Bretagnon T, Dannefaer S, Kerr D (1993) J Appl Phys 73(9):4697

    Article  CAS  Google Scholar 

  13. Dannefaer S, Bretagnon T, Kerr D (1996) J Appl Phys 80(7):3750

    Article  Google Scholar 

  14. von Bardeleben HJ (1986) Solid State Commun 57:137

    Article  Google Scholar 

  15. Guha S, Hasegawa F (1976) Solid State Electron 20:27

    Article  Google Scholar 

  16. Janardhanam V, Kumar AA, Reddy VR, Reddy PN (2010) J Mater Sci: Mater Electron 21:285

    Article  CAS  Google Scholar 

  17. Jansen RW (1990) Phys Rev B 41(11):7666

    Article  CAS  Google Scholar 

  18. Caldas MJ, Dabrowski J, Fazzio A, Scheffler M (1990) Phys Rev Lett 65(16):2046

    Article  CAS  Google Scholar 

  19. Alatalo M, Nieminen RM, Puska MJ, Seitsonen AP, Virkunnen R (1993) Phys Rev B 47(11):6381

    Article  CAS  Google Scholar 

  20. Seitsonen AP, Virkkunen R, Puska MJ, Nieminen RM (1994) Phys Rev B 49(9):5253

    Article  CAS  Google Scholar 

  21. Schmidt TM, Miwa RH, Fazzio A, Mota R (1999) Phys B 273–274:831

    Article  Google Scholar 

  22. Schmidt TM, Miwa RH, Fazzio A, Mota R (1999) Phys Rev B 60(24):16475

    Article  CAS  Google Scholar 

  23. Castleton CWM, Mirbt S (2003) Phys B 340–342:407

    Article  Google Scholar 

  24. Castleton CWM, Mirbt S (2004) Phys Rev B 70:195202

    Article  Google Scholar 

  25. Castleton CWM, Höglund A, Mirbt S (2006) Phys Rev B 73:035215

    Article  Google Scholar 

  26. Höglund A, Castleton CWM, Göthelid M, Johansson B, Mirbt S (2006) Phys Rev B 74:075332

    Article  Google Scholar 

  27. Castleton CWM, Höglund A, Mirbt S (2009) Model Simulat Mater Sci Eng 17:084003

    Article  Google Scholar 

  28. Hagen M, Finnis MW (1998) Philos Mag A 77:447

    Article  CAS  Google Scholar 

  29. Sen D, Windl W (2007) J Comp Theoret Nanosci 4:1

    Article  Google Scholar 

  30. Mishra R, Restrepo OD, Woodward PM, Windl W (2010) Chem Mater 22:6092

    Article  CAS  Google Scholar 

  31. Mayer J, Elsässer C, Fähnle M (1995) Phys Status Solidi B 191:283

    Article  CAS  Google Scholar 

  32. Perdew JP, Wang Y (1992) Phys Rev B 45:13244

    Article  Google Scholar 

  33. Heyd J, Scuserial GE, Ernzerhof M (2003) J Chem Phys 118:8207

    Article  CAS  Google Scholar 

  34. Heyd J, Scuserial GE, Ernzerhof M (2006) J Chem Phys 124:219906

    Article  Google Scholar 

  35. Paier J, Marsman M, Hummer K, Kresse G, Gerber IC, Angyan JG (2006) J Chem Phys 124:154709

    Article  CAS  Google Scholar 

  36. Mishra R, Restrepo OD, Rajan S, Windl W (2011) Appl Phys Lett 98:232114

    Article  Google Scholar 

  37. Alkauskas A, Broqvist P, Pasquarello A (2011) Phys Status Solidi B 248:775

    Article  CAS  Google Scholar 

  38. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  39. Blöchl PE, Jepsen O, Andersen OK (1994) Phys Rev B 49:16223

    Article  Google Scholar 

  40. Kresse G, Hafner J (1993) Phys Rev B 47:558

    Article  CAS  Google Scholar 

  41. Kresse G, Hafner J (1994) Phys Rev B 49:14251

    Article  CAS  Google Scholar 

  42. Vanderbilt D (1990) Phys Rev B 41:R7892

    Article  Google Scholar 

  43. Blöchl PE (1994) Phys Rev B 50:17953

    Article  Google Scholar 

  44. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  45. Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396

    Article  CAS  Google Scholar 

  46. Zhang SB, Northrup JE (1991) Phys Rev Lett 67(17):2339

    Article  CAS  Google Scholar 

  47. Torpo L, Marlo M, Staab TEM, Nieminen RM (2001) J Phys 13:6203

    CAS  Google Scholar 

  48. Gao F, Weber WJ, Xiao HY, Zu XT (2009) Nucl Instr Meth Phy Res B 267:2995

    Article  CAS  Google Scholar 

  49. Daw MS, Windl W, Carlson NN, Laudon M, Masquelier MP (2001) Phys Rev B 64:045205

    Article  Google Scholar 

  50. Batista ER, Heyd J, Hennig RG, Uberuaga BP, Martin RL, Scuseria GE, Umrigar CJ, Wilkins JW (2006) Phys Rev B 74:121102

    Article  Google Scholar 

  51. Vurgaftman I, Meyer JR, Ram-Mohan LR (2001) J Appl Phys 89:5815

    Article  CAS  Google Scholar 

  52. Windl W, Bunea MM, Stumpf M, Dunham ST, Masquelier MP (1999) Phys Rev Lett 83:4345

    Article  CAS  Google Scholar 

  53. Windl W (2004) Phys Status Solidi B 241:2313

    Article  CAS  Google Scholar 

  54. Windl W, Sankey OF, Menéndez J (1998) Phys Rev B 57:2431

    Article  CAS  Google Scholar 

  55. Hjalmarson HP, Vogl P, Wolford DJ, Dow JD (1980) Phys Rev Lett 44:810

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the Center for Emergent Materials at The Ohio State University, an NSF MRSEC (Grant No. DMR-0820414) for providing funding for this research. We further acknowledge partial support from the Institute for Materials Research at OSU and the DOE-NEUP program (project number CFP-09-842). Computer calculations were performed at the Ohio Supercomputer Center under Grant No. PAS0072.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohan Mishra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, R., Restrepo, O.D., Kumar, A. et al. Native point defects in binary InP semiconductors. J Mater Sci 47, 7482–7497 (2012). https://doi.org/10.1007/s10853-012-6595-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6595-8

Keywords

Navigation