Skip to main content
Log in

Structure and properties of multi-walled carbon nanotube porous sheets with enhanced elongation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this article, multi-walled carbon nanotubes (MWNTs)/dodecyl benzene sulfonic acid (DBSA) porous sheet networks (PSNs) of enhanced extensibility were developed and characterized. The MWNT/DBSA networks possess failure strains of 8–12 %, markedly higher than the literature reported values of 0.5–4 %. The networks were prepared through micro-filtration of highly dispersed MWNT in DBSA aqueous solutions. The DBSA molecule has two functions: In the dispersion stage, DBSA functions as a dispersant leading to the establishment of stable individually dispersed MWNT, and in the MWNT porous sheet, the presence of DBSA within the nanotubes’ network creates a lubrication-like effect, enhancing the networks’ extensibility. In fact, it was found that DBSA is assembled in two modes within the nanotubes’ network: a fraction which is strongly adsorbed onto the CNT surface, and another fraction entrapped within the network as a DBSA/water solution. It should be noted that the composition of these systems is stable under ambient room temperature conditions. Comparison of MWNT networks prepared from the MWNT/DBSA dispersions and from the same but coagulated before filtration has shown superiority of the non-coagulated systems in relation to structure and mechanical properties. The prepared MWNT/DBSA PSNs of enhanced extensibility were developed without any modification by polymers, and they are characterized by high electrical conductivity and nano-porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Iijima S (1991) Nature (London) 354:56

    Article  CAS  Google Scholar 

  2. M Meyyappan (ed) (2005) Carbon nanotubes: science and applications

  3. Breuer O, Sundararaj U (2004) Polym Compos 25:630. doi:10.1002/pc.20058

    Article  CAS  Google Scholar 

  4. Fortunati E, D’Angelo F, Martino S, Orlacchio A, Kenny JM, Armentano I (2011) Carbon 49:2370. doi:10.1016/j.carbon.2011.02.004

    Article  CAS  Google Scholar 

  5. Suckeveriene RY, Zelikman E, Mechrez G et al (2011) J Appl Polym Sci 120:676. doi:10.1002/app.33212

    Article  CAS  Google Scholar 

  6. Kumar S, Rath T, Mahaling RN, Mukherjee M, Khatua BB, Das CK (2009) J Nanosci Nanotechnol 9:2981. doi:10.1166/jnn.2009.012

    Article  CAS  Google Scholar 

  7. CJ Frizzell, M in het Panhuis, DH Coutinho et al. (2005) Phys Rev B 72:245420–245421

  8. Kim MH, Choi J-Y, Choi HK et al (2008) Adv Mater 20:457

    Article  CAS  Google Scholar 

  9. Kim YA, Muramatsu H, Hayashi T, Endo M, Terrones M, Dresselhaus MS (2006) Chem Vap Deposition 12:327

    Article  CAS  Google Scholar 

  10. Lee BY, Heo K, Bak JH et al (2008) Nano Lett 8:4483

    Article  CAS  Google Scholar 

  11. Meng C, Liu C, Fan S (2010) Adv Mater (Weinheim, Ger) 22:535

    Article  CAS  Google Scholar 

  12. Wang D, Song P, Liu C, Wu W, Fan S (2008) Nanotechnology 19:075609/1

    CAS  Google Scholar 

  13. Zschoerper NP, Katzenmaier V, Vohrer U, Haupt M, Oehr C, Hirth T (2009) Carbon 47:2174

    Article  CAS  Google Scholar 

  14. Liu L, Ma W, Zhang Z (2011) Small 7:1504. doi:10.1002/smll.201002198

    Article  CAS  Google Scholar 

  15. Chen IWP, Liang Z, Wang B, Zhang C (2010) Carbon 48:1064

    Article  CAS  Google Scholar 

  16. Cooper SM, Chuang HF, Cinke M, Cruden BA, Meyyappan M (2003) Nano Lett 3:189

    Article  CAS  Google Scholar 

  17. X Fu, C Zhang, T Liu, R Liang, B Wang (2010) Nanotechnology 21:235701

    Google Scholar 

  18. Hinds BJ, Chopra N, Rantell T, Andrews R, Gavalas V, Bachas LG (2004) Science 303:62

    Article  CAS  Google Scholar 

  19. Kang I, Schulz MJ, Kim JH, Shanov V, Shi D (2006) Smart Mater Struct 15:737

    Article  CAS  Google Scholar 

  20. Pacios M, del Valle M, Bartroli J, Esplandiu MJ (2008) J Electroanal Chem 619–620:117

    Google Scholar 

  21. Park JG, Louis J, Cheng Q et al (2009) Nanotechnology 20:415702/1

    CAS  Google Scholar 

  22. Whitten Philip G, Gestos Adrian A, Spinks Geoffrey M, Gilmore Kerry J, Wallace Gordon G (2007) J Biomed Mater Res B 82:37

    CAS  Google Scholar 

  23. Astrom JA, Timonen J, Karttunen M (2004) Phys Rev Lett 93:244301

    Article  CAS  Google Scholar 

  24. Dettlaff-Weglikowska U, Skakalova V, Graupner R et al (2005) J Am Chem Soc 127:5125

    Article  CAS  Google Scholar 

  25. Coleman JN, Blau WJ, Dalton AB et al (2003) Appl Phys Lett 82:1682

    Article  CAS  Google Scholar 

  26. Li Y-H, Wei J, Zhang X et al (2002) Chem Phys Lett 365:95

    Article  CAS  Google Scholar 

  27. Park JG, Smithyman J, Lin C-Y et al (2009) J Appl Phys 106:104310/1. doi:10.1063/1.3255901

    CAS  Google Scholar 

  28. Li Y, Kroeger M (2012) Appl Phys Lett 100:021907/1. doi:10.1063/1.3675912

    CAS  Google Scholar 

  29. Pham GT, Park Y-B, Wang S et al (2008) Nanotechnology 19:325705/1

    Article  CAS  Google Scholar 

  30. Liang Z, Gonnet P, Choi ES et al (2005) SAMPE Conf Proc 50:526

    CAS  Google Scholar 

  31. Whitten PG, Spinks GM, Wallace GG (2005) Carbon 43:1891

    Article  CAS  Google Scholar 

  32. Cha SI, Kim KT, Lee KH, Mo CB, Jeong YJ, Hong SH (2008) Carbon 46:482. doi:10.1016/j.carbon.2007.12.023

    Article  CAS  Google Scholar 

  33. Baughman RH, Cui C, Zakhidov AA et al (1999) Science 284:1340

    Article  CAS  Google Scholar 

  34. Berhan L, Yi YB, Sastry AM, Munoz E, Selvidge M, Baughman R (2004) J Appl Phys 95:4335

    Article  CAS  Google Scholar 

  35. Dettlaff-weglikowska U, Skakalova V, Graupner R, Ley L, Roth S (2003) Mater Res Soc Symp Proc 772:179

    CAS  Google Scholar 

  36. Zhang X, Sreekumar TV, Liu T, Kumar S (2004) J Phys Chem B 108:16435

    Article  CAS  Google Scholar 

  37. Talmon Y (1999) Surfactant Sci Ser 83:147

    CAS  Google Scholar 

  38. Shvartzman-Cohen R, Levi-Kalisman Y, Nativ-Roth E, Yerushalmi-Rozen R (2004) Langmuir 20:6085

    Article  CAS  Google Scholar 

  39. Moore VC, Strano MS, Haroz EH et al (2003) Nano Lett 3:1379. doi:10.1021/nl034524j

    Article  CAS  Google Scholar 

  40. Parra-Vasquez ANG, Behabtu N, Green MJ et al (2010) ACS Nano 4:3969. doi:10.1021/nn100864v

    Article  CAS  Google Scholar 

  41. Granite M, Radulescu A, Pyckhout-Hintzen W, Cohen Y (2011) Langmuir 27:751. doi:10.1021/la103096n

    Article  CAS  Google Scholar 

  42. Edri E, Regev O (2010) Ultramicroscopy 110:751. doi:10.1016/j.ultramic.2010.03.010

    Article  CAS  Google Scholar 

  43. Green MJ (2010) Polym Int 59:1319. doi:10.1002/pi.2878

    Article  CAS  Google Scholar 

  44. Zelikman E, Narkis M, Siegmann A, Valentini L, Kenny JM (2008) Polym Eng Sci 48:1872

    Article  CAS  Google Scholar 

  45. Artukovic E, Kaempgen M, Hecht DS, Roth S, Gruener G (2005) Nano Lett 5:757

    Article  CAS  Google Scholar 

  46. Bekyarova E, Itkis ME, Cabrera N et al (2005) J Am Chem Soc 127:5990

    Article  CAS  Google Scholar 

  47. Itkis Mikhail E, Borondics F, Yu A, Haddon Robert C (2006) Science 312:413

    Article  CAS  Google Scholar 

  48. Liu P, He G, Wu L (2009) Mater Sci Eng A A509:69

    CAS  Google Scholar 

  49. Bom D, Andrews R, Jacques D et al (2002) Nano Lett 2:615

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of the Russell Berrie Nanotechnology Institute is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Segal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mechrez, G., Suckeveriene, R.Y., Tchoudakov, R. et al. Structure and properties of multi-walled carbon nanotube porous sheets with enhanced elongation. J Mater Sci 47, 6131–6140 (2012). https://doi.org/10.1007/s10853-012-6533-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6533-9

Keywords

Navigation