Skip to main content
Log in

Prospects for the incorporation of cobalt into α-Fe2O3 nanorods during hydrothermal synthesis

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A feasibility study on the incorporation of cobalt into α-Fe2O3 nanorods (NRs) during hydrothermal synthesis (HS) is presented as a function of FeCl3 and CoCl2 concentration, phosphate surfactant concentration and pH value, with samples assessed using X-ray diffractometry, transmission electron microscopy, selected area electron diffraction and energy dispersive X-ray analysis. No evidence was found for the incorporation of cobalt into α-Fe2O3 NRs at low pH, whilst synthesis at intermediate and high pH values favoured the formation of CoFe2O4 NPs. The critical role of pH value over the precipitation, size and phase purity of the nanostructured reaction products is emphasised. At pH ~2, large, well crystalline α-Fe2O3 nanoparticles (NPs) and NRs were grown from FeCl3 solution in the absence and presence of phosphate, respectively, whilst no evidence was found for Co precipitation or incorporation in α-Fe2O3 following HS in the presence of CoCl2. At pH ~8, smaller α-Fe2O3 NPs, as well as Co3O4 and CoFe2O4 NPs were synthesised from FeCl3, CoCl2, or a mixture thereof. HS at pH ~12 produced a mixture of larger CoFe2O4 NPs and α-Fe2O3 NPs depending on the Fe:Co molar ratio. The formation of intermediate metastable (oxy)hydroxide phases is considered pH dependent, providing for a variety of different reaction pathways. Further, inclusion of preformed Co3O4 and CoFe2O4 NPs to the FeCl3 solution at pH ~2 in the presence of phosphate surfactant resulted in the synthesis of α-Fe2O3 NRs with residual Co3O4 and CoFe2O4 NPs attached to their surfaces. The CoFe2O4 NPs encouraged local dissolution leading to the formation of α-Fe2O3 NR surface corrugations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cornell RM, Schwertman U (2003) The iron oxides, 2nd edn. Wiley-VCH Verlag Gmbh & Co. KGaA, Weinheim

    Book  Google Scholar 

  2. Morrish AH (1994) Canted antiferromagnetism: hematite. World Scientific Publishing Co. Pte. Ltd, Singapore

    Google Scholar 

  3. Zhao Y, Dunnil CW, Zhu Y, Gregory DH, Kockenberger W, Li Y, Hu W, Ahmad I, McCartney DG (2007) Chem Mater 19:916

    Article  CAS  Google Scholar 

  4. Can MM, Firat T, Ozcan S (2011) Phys B. doi:10.1016/j.physb.2011.01.002

    Google Scholar 

  5. Zysler RD, Vasquez-Mansilla M, Arciprete C, Dimitrijewits M, Rodriguez-Sierra D, Saragovi C (2001) J Magn Magn Mater 224:39

    Article  CAS  Google Scholar 

  6. Suber L, Santiago AG, Fiorani D, Imperatori P, Testa AM, Angiolini M, Montone A, Dormann JL (1998) Appl Organomet Chem 12:347

    Article  CAS  Google Scholar 

  7. Sahu KK, Rath C, Mishra NC, Anand S, Das RP (1997) J Colloid Interface Sci 185:402

    Article  Google Scholar 

  8. Wu J-J, Lee Y-L, Chiang H-H, Wong DK-P (2006) J Phys Chem Lett 110:18108

    CAS  Google Scholar 

  9. Tang B, Wang G, Zhuo L, Ge J, Cui L (2006) Inorg Chem 45:5196

    Article  CAS  Google Scholar 

  10. Vasquez-Mansilla M, Zysler R, Fiorani D, Suber L (2002) Phys B 320:206

    Article  Google Scholar 

  11. Woo K, Lee HJ (2004) J Magn Magn Mater 272–276:e1155

    Article  Google Scholar 

  12. Suber L, Fiorani D, Imperatori P, Foglia S, Montone A, Zysler R (1999) Nanostruct Mater 11:797

    Article  CAS  Google Scholar 

  13. Almeida TP, Fay MW, Zhu YQ, Brown PD (2009) J Phys Chem B 113:18689

    CAS  Google Scholar 

  14. Penn RL, Oskam G, Strathmann TJ, Searson PC, Stone AT, Veblen DR (2001) J Phys Chem C 105:2177

    CAS  Google Scholar 

  15. Sugimoto T, Sakata K, Muramatsu A (1993) J Colloid Interface Sci 159:372

    Article  CAS  Google Scholar 

  16. Esquivel J, Facundo IA, Trevino ME, Lopez RG (2007) J Mater Sci 42:9015. doi:10.1007/s10853-007-1834-0

    Article  CAS  Google Scholar 

  17. Theissmann R, Fuess H, Tsuda K, Terauchi M (2009) J Mater Sci 44:1421. doi:10.1007/s10853-007-1718-3

    Article  CAS  Google Scholar 

  18. Dar MA (2005) J Mater Sci 40:3031. doi:10.1007/s10853-005-2393-x

    Article  CAS  Google Scholar 

  19. Sugimoto T, Muramatsu A (1996) J Colloid Interface Sci 184:626

    Article  CAS  Google Scholar 

  20. Sugimoto T, Wang Y, Itoh H, Muramatsu A (1998) Colloids Surf A 134:265

    Article  CAS  Google Scholar 

  21. Sugimoto T, Muramatsu A, Sakata K, Shindo D (1993) J Colloid Interface Sci 158:420

    Article  CAS  Google Scholar 

  22. Almeida TP, Fay MW, Zhu Y, Brown PD (2010) CrystEngComm 12:1700

    Article  CAS  Google Scholar 

  23. Almeida TP, Fay MW, Zhu Y, Brown PD (2010) Nanoscale 2:2390

    Article  CAS  Google Scholar 

  24. Gonsalves KE, Li H, Santiago P (2001) J Mater Sci 36:2461. doi:10.1023/A:1017982032159

    Article  CAS  Google Scholar 

  25. Dong Q, Kumada N, Yonesaki Y, Takei T, Kinomura N, Wang D (2010) J Mater Sci 45:5685. doi:10.1007/s10853-010-4634-x

    Article  CAS  Google Scholar 

  26. Barrero CA, Arpe J, Sileo E, Sanchez LC, Zysler R, Saragovi C (2004) Phys B 354:27

    Article  CAS  Google Scholar 

  27. Alvarez M, Rueda EH, Sileo EE (2006) Chem Geol 231:288

    Article  CAS  Google Scholar 

  28. Ayub I, Berry FJ, Bilsborrow RL, Helgason O, Mercader RC, Moore EA, Stewart SJ, Wynn PG (2001) J Solid State Chem 156:408

    Article  CAS  Google Scholar 

  29. Beukes JP, Giesekke EW, Elliot W (2000) Miner Eng 13:1573

    Article  Google Scholar 

  30. Singh B, Sherman DM, Gilkes RJ, Wells W, Mosselmans JFW (2000) Clays Clay Miner 48:521

    Article  CAS  Google Scholar 

  31. Dhara S, Kotnala RK, Rastogi AC, Das BK (1992) Jpn J Appl Phys 31:3853

    Article  CAS  Google Scholar 

  32. Ni Y, Ge X, Zhang Z, Liu H, Zhu Z, Ye Q (2001) Mater Res Bull 36:2383

    Article  CAS  Google Scholar 

  33. Huang JH, Kargl-Simard C, Oliazadeh M, Alfantazi AM (2004) Hydrometallurgy 75:77

    Article  CAS  Google Scholar 

  34. Cote L, Teja AS, Wilkinson AP, Zhang Z (2003) Fluid Phase Equilib 210:307

    Article  CAS  Google Scholar 

  35. Jung I-H, Decterov SA, Pelton AD, Kim H-M, Kang Y-B (2004) Acta Mater 52:507

    Article  CAS  Google Scholar 

  36. Iida S (1956) J Phys Soc Jpn 11:846

    Article  CAS  Google Scholar 

  37. De Guire MR, Prasanna TRS, Kalonji G, O’Handley RC (1987) J Am Ceram Soc 70:831

    Article  Google Scholar 

  38. De Vicente J, Delgado AV, Plaza RC, Duran JDG, Gonzalez-Caballero F (2000) Langmuir 16:7954

    Article  Google Scholar 

  39. Wang J, Deng T, Dai Y (2006) J Alloys Compd 419:155

    Article  CAS  Google Scholar 

  40. Sileo EE, Rodenas LG, Paiva-Santos CO, Stephens PW, Morando PJ, Blesa MA (2006) J Solid State Chem 179:2237

    Article  CAS  Google Scholar 

  41. Fayek MK, Bahgat AA (1982) Phys B 46:199

    Article  CAS  Google Scholar 

  42. Shriver DF, Atkins PW (1999) Inorganic chemistry. Oxford University Press, Oxford

    Google Scholar 

  43. Zhao LJ, Jiang Q (2010) Mater Lett 64:677

    Article  CAS  Google Scholar 

  44. Baes CF, Mesmer RE (1986) The hydrolysis of cations. Robert E. Krieger Publishing Company, Malabar

    Google Scholar 

  45. Lahann RW (1976) Clays Clay Miner 24:320

    Article  CAS  Google Scholar 

  46. Popov VV, Gorbunov AI (2006) Inorg Mater 42:319

    Google Scholar 

  47. Sugimoto T, Shimotsuma Y, Itoh H (1998) Powder Technol 96:85

    Article  CAS  Google Scholar 

  48. Genin J-MR, Ruby C (2004) Solid State Sci 6:705

    Article  CAS  Google Scholar 

  49. Almeida TP, Fay MW, Zhu Y, Brown PD (2012) J Nanosci Nanotechnol (in press)

  50. Das S, Hendry MJ, Essilfie-Dughan J (2011) Environ Sci Technol 45:268

    Article  CAS  Google Scholar 

  51. Li W, Guan J-G, Wang W, Tong G-X, Fan X-A (2009) Mater Chem Phys 118:496

    Article  CAS  Google Scholar 

  52. Murray J, Kirwan L, Loan M, Hodnett BK (2009) Hydrometallurgy 95:239

    Article  CAS  Google Scholar 

  53. Smith FG, Kidd D (1949) J Am Mineral 46(5):403

    Google Scholar 

  54. Atkinson RJ, Posner AM, Quirk JP (1977) Clays Clay Miner 25:49

    Article  CAS  Google Scholar 

  55. Persson P, Nilsson N, Sjoberg S (1996) J Colloid Interface Sci 177:263

    Article  CAS  Google Scholar 

  56. Soler MAG, Lima ECD, da Silva W, Melo TFO, Pimenta ACM, Sinnecker JP, Azevedo RB, Garg VK, Oliviera AC, Novak MA, Morais PC (2007) Langmuir 23:9611

    Article  CAS  Google Scholar 

  57. Mutaftschiev B (1993) In: Hurle DTJ (ed) Handbook of crystal growth. 1a. Fundamentals: thermodynamics and kinetics. Elsevier, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor P. Almeida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almeida, T.P., Fay, M.W., Zhu, Y. et al. Prospects for the incorporation of cobalt into α-Fe2O3 nanorods during hydrothermal synthesis. J Mater Sci 47, 5546–5560 (2012). https://doi.org/10.1007/s10853-012-6448-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6448-5

Keywords

Navigation