Skip to main content
Log in

Control of the structure, morphology and dielectric properties of bismuth titanate ceramics by praseodymium substitution using an intermediate fuel agent-assisted self-combustion synthesis

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The volatilization of bismuth (Bi) species and bismuth oxide (Bi2O3) leads to the presence of the oxygen vacancies (V 00O ) and consequently restrains the properties of bismuth titanate (BIT; Bi4Ti3O12). This report presents the incorporation of different atomic ratios of praseodymium ion (Pr3+: x = 0, 0.2, 0.4, 0.6, 0.8 and 1.0) into the BIT (Bi4−x Pr x Ti3O12) ceramics through an intermediate fuel agent-assisted self-combustion synthesis (IFSC). X-ray diffraction and Raman spectroscopy results revealed that some of bismuth ion (Bi3+) in the pseudo-perovskite layer containing Ti–O octahedra was substituted by Pr3+ ion. The substitution by ion with a smaller ionic radius caused the structure distortion and consequently resulted in the phase transformation from an orthorhombic symmetry to a tetragonal symmetry. Besides, it suppressed the volatilization of Bi and Bi2O3 and increased the stability of metal–oxygen octahedra in the BIT. These play a crucial role to control the crystal growth, as well as limit the V 00O . Dense ceramic with a relative density up to 96.2% was obtained by incorporating Pr3+ with atomic ratio of 1.0. It exhibited high dielectric constant as 908.19 and low dissipation factor as 0.0011. The results address the possibility to control the structure, morphology and dielectric properties of BIT ceramic by incorporating Pr3+ ion through IFSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yueming L, Wen C, Qing X, Jing Z (2007) Ceram Int 33:95

    Article  Google Scholar 

  2. Hyatt NC, Hriljac JA, Comyn TP (2003) Mater Res Bull 38:837

    Article  CAS  Google Scholar 

  3. Subbarao EC (1961) Phys Rev 122:804

    Article  CAS  Google Scholar 

  4. Hou J, Kumar RV, Qu Y, Krsmanovic D (2009) J Nanopart Res 12:563

    Article  Google Scholar 

  5. Villegas M, Jardiel T, Caballero AC (2009) J Eur Ceram Soc 29:737

    Article  CAS  Google Scholar 

  6. Lazarevic ZZ, Romcevic NZ, Bobic JD, Romcevic MJ, Dohcevic-Mitrovic Z, Stojanvic BD (2009) J Alloys Compd 486:848

    Article  CAS  Google Scholar 

  7. Lazarevic ZZ, Stojanvic BD, Paiva-Santos CO, Romcevic NZ (2008) Ferroelectric 368:154

    Article  CAS  Google Scholar 

  8. Tang Q-Y, Kan Y-M, Li Y-G, Zhang G-J, Wang P-L (2006) Sci Mater 54:2075

    CAS  Google Scholar 

  9. Simoes AZ, Quinelato C, Ries A, Stojanovic BD, Longo E, Varela JA (2006) Mater Chem Phys 98:481

    Article  CAS  Google Scholar 

  10. Takahashi M, Noguchi Y, Miyayama M (2005) J Ceram Process Res 6:281

    Google Scholar 

  11. Yoneda Y, Kohara S, Mizuki J (2006) J Appl Phys 45:7556

    Article  CAS  Google Scholar 

  12. Park BH, Kang BS, Bu SD, Noh TW, Lee J, Jo W (1999) Nature 401:682

    Article  CAS  Google Scholar 

  13. Yamada M, Iizawa N, Yamaguchi T, Sakamoto W, Kikuta K, Yogo T, Hayashi T, Hirano S-I (2003) Jpn J Appl Phys 42:5222

    Article  CAS  Google Scholar 

  14. Cheng CP, Tang MH, Ye Z, Zhong XL, Zheng XJ, Zhou YC, Hu ZS (2007) Mater Lett 61:3563

    Article  CAS  Google Scholar 

  15. Chen Y-C (2006) Thin Solid Films 513:331

    Article  CAS  Google Scholar 

  16. Kim JK, Kim J, Song TW, Kim SS (2002) Thin Solid Films 419:225

    Article  CAS  Google Scholar 

  17. Goh PY, Razak KA, Sreekantan S (2009) J Alloys Compd 475:758

    Article  CAS  Google Scholar 

  18. Krengvirat W, Sreekantan S, Ahmad-Fauzi MN, Matsuda A, Chinwanitcharoen C (2012) J Ceram Soc Jpn 120:1

    Article  Google Scholar 

  19. Achary SN, Patwe SJ, Krishna PSR, Shinde AB, Tyagi AK (2008) J Phys 71:935

    CAS  Google Scholar 

  20. Kim JS, Lee SY, Lee HJ, Ahn CW, Kim WI, Jang MS (2008) J Electroceram 21:633

    Article  CAS  Google Scholar 

  21. Simoes AZ, Stojanovic BD, Ramirez MA, Cavalheiro AA, Longo E, Varela JA (2008) Ceram Int 34:257

    Article  CAS  Google Scholar 

  22. Moore JJ, Yi HC (1990) J Mater Sci 25:1159. doi:10.1007/BF00585421

    Google Scholar 

  23. Du X, Xu Y, Ma H, Wang J, Li X (2007) J Am Ceram Soc 90:1382

    Article  CAS  Google Scholar 

  24. Wang X-H, Chen R-Z, Gui Z-L, Li LT (2003) Mater Sci Eng B 99:199

    Article  Google Scholar 

  25. Wang YH, Huang CP, Zhu YY (2006) Solid State Commun 138:229

    Article  CAS  Google Scholar 

  26. Du YL, Zhang MS, Chen Q, Yuan ZR, Yin V, Zhang QA (2002) Solid State Commun 124:113

    Article  CAS  Google Scholar 

  27. Wang Y, Xu G, Zhang X, Tang W, Cheng G, Zhu Y (2004) Mater Lett 58:813

    Article  CAS  Google Scholar 

  28. Oliveira RC, Cavalcante LS, Sczancoski JC, Aguiar EC, Espinosa JWM, Varela JA, Pizani PS, Longo E (2009) J Alloys Compd 478:661

    Article  CAS  Google Scholar 

  29. Luo S, Tang Z, Yao W, Zhang Z (2003) Microelectron Eng 66:147

    Article  CAS  Google Scholar 

  30. Ng CY, Razak KA (2011) J Alloys Compd 509:942

    Article  CAS  Google Scholar 

  31. Razak KA, Cheah JY, Sreekantan S (2011) J Alloys Compd 509:2936

    Article  Google Scholar 

  32. Krengvirat W, Sreekantan S, Ahmad-Fauzi MN, Chinwanitcharoen C, Hiroyuki M, Atsunori M (2011) J Ceram Int. doi:10.1016/j.ceramint.2011.11.081

  33. Hervoches CH, Lightfoot P (1991) Chem Mater 11:3359

    Article  Google Scholar 

  34. Zarycka A, Lisinska-Czekaj A, Czuber J, Orkisz T, Ilczuk J, Czekaj D (2005) Mater Sci-Pol 23:167

    CAS  Google Scholar 

  35. Graves PR, Hua G, Myhra S, Thompson JG (1995) J Solid State Chem 114:112

    Article  CAS  Google Scholar 

  36. Ling ZC, Xia HR, Liu WL, Han H, Wang XQ, Sun SQ, Ran DG, Yu LL (2006) Mater Sci Eng B 128:156

    Article  CAS  Google Scholar 

  37. Zhou D, Gu H, Hu Y, Qian Z, Hu Z, Yang K, Zou T, Wang Z, Guan J, Chen W (2010) J Appl Phys 107:094105-1, 094105-3–094105-6

  38. Watcharapasorn A, Siriprapa P, Jiansirisomboon S (2009) J Eur Ceram Soc 30:87

    Article  Google Scholar 

  39. Chon U, Shim JS (2003) J Appl Phys 93:4769

    Article  CAS  Google Scholar 

  40. Buessem WR, Cross LE, Goswami AK (1996) J Am Ceram Soc 49:33

    Article  Google Scholar 

  41. Arlt G (1989) Ferroelectrics 91:3

    Article  Google Scholar 

  42. Kong LB, Ma J, Zhu W, Tan OK (2001) Mater Lett 51:108

    Article  CAS  Google Scholar 

  43. Coondoo I, Jha AK, Agarwal SK (2007) Ceram Int 33:41

    Article  CAS  Google Scholar 

  44. Simoes AZ, Pianno RF, Riccardi CS, Cavalcante LS, Longo E, Varela JA (2008) Ceram Int 454:66

    CAS  Google Scholar 

  45. Takahashi M, Noguchi Y, Miyayama M (2005) Ceram Process Res 6:281

    Google Scholar 

  46. Gachigi KW, Kumar U, Dougherty JP (2002) ISAF ‘92, Proc Eighth IEEE Int Symp Appl 492–495

Download references

Acknowledgements

The authors like to thank Universiti Sains Malaysia for sponsoring this work under a 2008 short-term grant (6035276) and the ASEAN University Network for Science and Engineering Education (AUN/SEED-net) (6050151).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srimala Sreekantan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krengvirat, W., Sreekantan, S., Ahmad-Fauzi, M.N. et al. Control of the structure, morphology and dielectric properties of bismuth titanate ceramics by praseodymium substitution using an intermediate fuel agent-assisted self-combustion synthesis. J Mater Sci 47, 4019–4027 (2012). https://doi.org/10.1007/s10853-012-6255-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6255-z

Keywords

Navigation