Skip to main content
Log in

Preparation and tribological properties of graphene oxide/nitrile rubber nanocomposites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Graphene oxide (GO)/nitrile rubber (NBR) nanocomposites with various contents of GO were prepared by a solution-mixing method,in this study. The GO sheets were exfoliated from natural fake graphite by an improved Hummers method and could be further dispersed homogeneously in NBR matrix. The thickness and size of the GO sheets were observed by atomic force microscopy and transmission electron microscopy. The tribological properties of the GO/NBR nanocomposites were evaluated on a ring-block MRH-3 wear tester under dry sliding and water-lubricated conditions. The worn surface morphologies of the GO/NBR nanocomposites were observed by a scanning electron microscopy. It was found that under dry sliding, both the friction coefficient (COF) and specific wear rate of the nanocomposites decreased dramatically at first, then increased with increasing GO contents, while under water-lubricated condition, both the COF and specific wear rate of the nanocomposites decreased with increasing GO contents. Finally, the friction and wear mechanisms of the GO/NBR nanocomposites were tentatively proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Geim AK (2009) Science 324(5934):1530. doi:10.1126/science.1158877

    Article  CAS  Google Scholar 

  2. Verdejo R, Bernal MM, Romasanta LJ, Lopez-Manchado MA (2011) J Mater Chem 21:3301

    Article  CAS  Google Scholar 

  3. Jang BZ, Zhamu A (2008) J Mater Sci 43(15):5092. doi:10.1007/s10853-008-2755-2

    Article  CAS  Google Scholar 

  4. Tibbetts GG, Lake ML, Strong KL, Rice BP (2007) Compos Sci Technol 67(7–8):1709. doi:10.1016/j.compscitech.2006.06.015

    Article  CAS  Google Scholar 

  5. Wang Y, Shi ZX, Fang JH, Xu HJ, Yin J (2011) Carbon 49(4):1199. doi:10.1016/j.carbon.2010.11.036

    Article  CAS  Google Scholar 

  6. Kim H, Macosko CW (2009) Polymer 50(15):3797. doi:10.1016/j.polymer.2009.05.038

    Article  CAS  Google Scholar 

  7. Ajayan PM, Schadler LS, Giannaris C, Rubio A (2000) Adv Mater 12(10):750

    Article  CAS  Google Scholar 

  8. Qiu JJ, Wang SR (2011) J Appl Polym Sci 119(6):3670. doi:10.1002/app.33068

    Article  CAS  Google Scholar 

  9. Pan YZ, Wu TF, Bao HQ, Li L (2011) Carbohydr Polym 83(4):1908. doi:10.1016/j.carbpol.2010.10.054

    Article  CAS  Google Scholar 

  10. Li R, Liu CH, Ma J (2011) Carbohydr Polym 84(1):631. doi:10.1016/j.carbpol.2010.12.041

    Article  CAS  Google Scholar 

  11. Jung JH, Jeon JH, Sridhar V, Oh IK (2011) Carbon 49(4):1279. doi:10.1016/j.carbon.2010.11.047

    Article  CAS  Google Scholar 

  12. Bai X, Wan CY, Zhang Y, Zhai YH (2011) Carbon 49(5):1608. doi:10.1016/j.carbon.2010.12.043

    Article  CAS  Google Scholar 

  13. Saffar A, Shojaei A, Arjmand M (2010) Wear 269(1–2):145. doi:10.1016/j.wear.2010.03.021

    Article  CAS  Google Scholar 

  14. Pan GL, Guo QA, Ding JA, Zhang WD, Wang XM (2010) Tribol Int 43(8):1318. doi:10.1016/j.triboint.2009.12.068

    Article  CAS  Google Scholar 

  15. Österle W, Dörfel I, Prietzel C, Rooch H, Cristol-Bulthé AL, Degallaix G, Desplanques Y (2009) Wear 267(5–8):781. doi:10.1016/j.wear.2008.11.023

    Article  Google Scholar 

  16. Yu S, Hu H, Yin J (2008) Wear 265(3–4):361. doi:10.1016/j.wear.2007.11.006

    Article  CAS  Google Scholar 

  17. Schön J (2000) Wear 237(1):77. doi:10.1016/s0043-1648(99)00315-4

    Article  Google Scholar 

  18. Lee H, Lee N, Seo Y, Eom J, Lee S (2009) Nanotechnology 20(32). doi:10.1088/0957-4484/20/32/325701

  19. Lee C, Li QY, Kalb W, Liu XZ, Berger H, Carpick RW, Hone J (2010) Science 328(5974):76. doi:10.1126/science.1184167

    Article  CAS  Google Scholar 

  20. Lee C, Wei X, Li Q, Carpick R, Kysar JW, Hone J (2009) Phys Stat Sol b 246(11–12):2562. doi:10.1002/pssb.200982329

    Article  CAS  Google Scholar 

  21. Bonelli F, Manini N, Cadelano E, Colombo L (2009) Eur Phys J B 70(4):449. doi:10.1140/epjb/e2009-00239-7

    Article  CAS  Google Scholar 

  22. Kaiser A, Brandau S, Klimpel M, Barner-Kowollik C (2010) Macromol Rapid Commun 31(18):1616. doi:10.1002/marc.201000162

    Article  CAS  Google Scholar 

  23. Kader MA, Kim K, Lee YS, Nah C (2006) J Mater Sci 41(22):7341. doi:10.1007/s10853-006-0792-2

    Article  CAS  Google Scholar 

  24. Hsieh TH, Kinloch AJ, Masania K, Lee JS, Taylor AC, Sprenger S (2010) J Mater Sci 45(5):1193. doi:10.1007/s10853-009-4064-9

    Article  CAS  Google Scholar 

  25. Degrange JM, Thomine A, Kapsa P, Pelletier JM, Chazeau L, Vigier G, Dudragne G, Guerbe L (2005) Wear 259(1–6):684. doi:10.1016/j.wear.2005.02.110

    Article  CAS  Google Scholar 

  26. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun ZZ, Slesarev A, Alemany LB, Lu W, Tour JM (2010) ACS Nano 4(8):4806. doi:10.1021/nn1006368

    Article  CAS  Google Scholar 

  27. Guo HL, Wang XF, Qian QY, Wang FB, Xia XH (2009) ACS Nano 3(9):2653. doi:10.1021/nn900227d

    Article  CAS  Google Scholar 

  28. Rourke JP, Pandey PA, Moore JJ, Bates M, Kinloch IA, Young RJ, Wilson NR (2011) Angew Chem Int Ed 50(14):3173. doi:10.1002/anie.201007520

    Article  CAS  Google Scholar 

  29. Shen JF, Hu YZ, Shi M, Lu X, Qin C, Li C, Ye MX (2009) Chem Mater 21(15):3514. doi:10.1021/cm901247t

    Article  CAS  Google Scholar 

  30. Wilson NR, Pandey PA, Beanland R, Young RJ, Kinloch IA, Gong L, Liu Z, Suenaga K, Rourke JP, York SJ, Sloan J (2009) ACS Nano 3(9):2547. doi:10.1021/nn900694t

    Article  CAS  Google Scholar 

  31. Park S, Ruoff RS (2009) Nat Nano 4(4):217

    Article  CAS  Google Scholar 

  32. Das A, Jurk R, Stockelhuber KW, Heinrich G (2007) Exp Polym Lett 1(11):717. doi:10.3144/expresspolymlett.2007.99

    Article  CAS  Google Scholar 

  33. Bai X, Wan C, Zhang Y, Zhai Y (2011) Carbon 49(5):1608. doi:10.1016/j.carbon.2010.12.043

    Article  CAS  Google Scholar 

  34. Xu J, Hu Y, Song L, Wang Q, Fan W, Chen Z (2002) Carbon 40(3):450. doi:10.1016/s0008-6223(01)00134-8

    Article  CAS  Google Scholar 

  35. Gu F, Zhang ZZ, Liu WM, Su FH, Zhang HJ (2008) J Appl Polym Sci 110(3):1771. doi:10.1002/app.28124

    Article  Google Scholar 

  36. Lai SQ, Li TS, Liu XJ, Lv RG (2004) Macromol Mater Eng 289(10):916. doi:10.1002/mame.200400140

    Article  CAS  Google Scholar 

  37. Buckley DH, Brainard WA (1975) Carbon 13(6):501. doi:10.1016/0008-6223(75)90052-4

    Article  CAS  Google Scholar 

  38. Xu D, Karger-Kocsis J (2010) J Mater Sci 45(5):1293. doi:10.1007/s10853-009-4081-8

    Article  Google Scholar 

  39. Kaneko D, Oshikawa M, Yamaguchi T, Gong JP, Doi M (2007) J Phys Soc Jpn 76 (4). doi:10.1143/jpsj.76.043601

  40. Bahadur S (2000) Wear 245(1–2):92. doi:10.1016/s0043-1648(00)00469-5

    Article  CAS  Google Scholar 

  41. Ziemianski K, Pietrasik R (1979) Wear 56(1):123. doi:10.1016/0043-1648(79)90011-5

    Article  CAS  Google Scholar 

  42. Srinath G, Gnanamoorthy R (2007) Compos Sci Technol 67(3–4):399. doi:10.1016/j.compscitech.2006.09.004

    Article  CAS  Google Scholar 

  43. Jia JH, Chen JM, Zhou HD, Wang JB, Zhou H (2004) Tribol Int 37(5):423. doi:10.1016/j.triboint.2003.12.013

    Article  CAS  Google Scholar 

  44. Meng H, Sui GX, Xie GY, Yang R (2009) Compos Sci Technol 69(5):606. doi:10.1016/j.compscitech.2008.12.004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial supports from the National Science Foundation for Distinguished Young Scholars of China (Grant No. 51025517), the Innovative Group Foundation of NSFC (Grant No. 50721062), and the 973 Project of China (2007CB607606), the National Defense Basic Scientific Research Project (A1320110011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingmei Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Wang, Q., Wang, T. et al. Preparation and tribological properties of graphene oxide/nitrile rubber nanocomposites. J Mater Sci 47, 730–738 (2012). https://doi.org/10.1007/s10853-011-5846-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5846-4

Keywords

Navigation