Skip to main content
Log in

Synthesis of highly stable magnesium fluoride suspensions and their application in the corrosion protection of a Magnesium alloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study presents a new approach to enhance the corrosion resistance of tungsten inert gas (TIG) welded AZ31 magnesium alloys by using nanocrystalline magnesium fluoride suspensions in a suspension plasma spray (SPS) process. We have developed a synthesis for the preparation of nanocrystalline magnesium fluoride suspensions, which delivers nearly monodisperse nanoparticles in a gram scale yield. The particles were analyzed with transmission electron microscopy (TEM) and powder X-ray diffraction (PXRD). Stable suspensions of magnesium fluoride nanoparticles in water were characterized by dynamic light scattering (DLS), zeta-potential, and viscosity measurements. Such suspensions were deposited with an SPS torch onto TIG welded seams of the magnesium alloy AZ31, thus producing a protective magnesium fluoride layer. Magnesium fluoride covered welded seams were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy (EDXS). In order to introduce a simple method for sensoring the deposited magnesium fluoride coatings, the magnesium fluoride nanoparticles can also be fluorescence-labeled by co-doping with cerium(III) and terbium(III), the respective optical properties were characterized by reflection and luminescence spectroscopy. The deposited layers can, thus, be inspected by illumination with an UV lamp, because of their bright green emission. The corrosion properties of the magnesium fluoride layer on the welded seams were studied by means of potentiodynamic potential measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Makar GL, Kruger J (1993) Int Mater Rev 38:3

    Google Scholar 

  2. Song G (2005) Adv Eng Mater 7(7):563

    Article  CAS  Google Scholar 

  3. Gray JE, Luan B (2002) J Alloys Compd 336:88

    Article  CAS  Google Scholar 

  4. Ghali E, Dietzel W, Kainer K-U (2004) J Mater Eng Perform 13:7

    Article  CAS  Google Scholar 

  5. Song G, Atrens A (2003) Adv Eng Mater doi:10.1002/adem.200310405

  6. Song G, Atrens A (1999) Adv Eng Mater 1:11

    Article  CAS  Google Scholar 

  7. Thate W, Zschetzsche J (2003) wt Werkstattstechnik online 10:699

    Google Scholar 

  8. Xu RZ, Song G, Wang Z (2009) Mater Res Innov 13:441

    Article  CAS  Google Scholar 

  9. Zeng R-C, Chen J, Dietzel W, Zettler R, dos Santos JF, Nascimento ML, Kainer KU (2009) Corros Sci 51:1738

    Article  CAS  Google Scholar 

  10. Kurze P (1998) Mat-wiss Werkstofftech 29:85

    Article  CAS  Google Scholar 

  11. Yerokhin AL, Shatrov A, Samsonov V, Shashkov P, Leyland A, Matthews A (2004) Surf Coat Technol. doi:10.1016/S0257-8972(03)00877-6

  12. Blawert C, Hort N, Kainer KU (2004) Trans Indian Inst Met 57:397

    CAS  Google Scholar 

  13. Witte F, Fischer J, Nellesen J, Vogt C, Vogt J, Donath T, Beckmann F (2009) Acta Biomater. doi:10.1016/j.actbio.2009.10.012

  14. Alvarez-Lopez M, Pereda MD, del Valle JA, Fernandez-Lorenzo M, Garcia-Alonso MC, Ruano OA, Escudero ML (2009) Acta Biomater. doi:10.1016/j.actbio.2009.04.041

  15. Chiu KY, Wong MH, Cheng FT, Man HC (2007) Surf Coat Technol 202:590

    Article  CAS  Google Scholar 

  16. Brar HS, Platt MO, Sarntinoranont M, Martin PI, Manuel M (2009) J Miner Met Mater Soc. doi:10.1007/s11837-009-0129-0

  17. Krause A, von der Höh D, Bormann D, Krause C, Bach F-W, Windhagen H, Meyer-Lindenberg A (2010) J Mater Sci. doi:10.1007/s10853-009-3936-3

  18. Li JN, Cao P, Zhang XN, Zhang SX, He YH (2010) J Mater Sci. doi:10.1007/s10853-010-4688-9

  19. Li Y, Hodgson PD, Wen C (2011) J Mater Sci. doi:10.1007/s10853-010-4843-3

  20. Bach Fr-W, Hassel T, Krause C, Wilk P (2005) In: Neelamagghan NR, Kaplan HI, Powell BR (eds) Magnesium technology 2005. TMS, Warrendale

    Google Scholar 

  21. Lellouche J, Kahana E, Elias S, Gedanken A, Banin E (2009) Biomater 30:5969

    Article  CAS  Google Scholar 

  22. Toma F-L, Berger L-M, Naumann T, Langer S (2008) Surf Coat Technol 202:4343

    Article  CAS  Google Scholar 

  23. Pawlowski L (2009) Surf Coat Technol 203:2807

    Article  CAS  Google Scholar 

  24. Kozerski S, Pawlowski L, Jaworski R, Roudet F, Petit F (2009) Surf Coat Technol. doi:10.1016/j.surfcoat.2009.09.020

  25. Chen Z, Trice RW, Besser M, Yang X, Sordelet D (2004) J Mater Sci 39:4171

    Article  CAS  Google Scholar 

  26. Burlacov I, Jirkovsky J, Müller M, Heinmann RB (2006) Surf Coat Technol 201:255

    Article  CAS  Google Scholar 

  27. Tomaszek R, Pawlowski L, Gengembre L, Laureyns J, Znamirowski Z, Zdanowski J (2006) Surf Coat Technol 201:45

    Article  CAS  Google Scholar 

  28. Wittmann-Teneze K, Valle K, Bianchi L, Belleville P, Caron N (2008) Surf Coat Technol 202:4349

    Article  CAS  Google Scholar 

  29. Jaworski R, Pawlowski L, Pierlot C (2009) Thermal Spray. doi: 10.1361/cp2009itsc0156

  30. Feldmann C (2005) Solid State Sci 7:868

    Article  CAS  Google Scholar 

  31. Feldmann C, Roming M, Trampert K (2006) Small 2:1248

    Article  CAS  Google Scholar 

  32. Eiden-Assmann S, Maret G (2004) Mater Res Bull 39:21

    Article  CAS  Google Scholar 

  33. Wei Y, Lu F, Zhang X, Chen D (2007) Mater Lett 61:1337

    Article  CAS  Google Scholar 

  34. Wang ZL, Quan ZW, Jia PY, Lin CK, Luo Y, Chen Y, Fang J, Zhou W, O’Connor CJ, Lin J (2006) Chem Mater. doi:10.1021/cm052360x

  35. Kong D, Wang ZL, Lin CK, Quan ZW, Li YY, Li CX, Lin J (2007) Nanotechnology. doi:10.1088/0957-4484/18/7/075601

  36. Kuznetsov S, Osiko V, Tkatchenko E, Fedorov P (2006) Russ Chem Rev 75:1065

    Article  CAS  Google Scholar 

  37. Riwotzki K, Meyssamy H, Schnablegger H, Kornowski A, Haase M (2001) Angew Chem Int Ed 113:574

    Article  Google Scholar 

  38. Heinroth F, Gruss D, Müller S, Waltz F, Martynczuk J, Feldhoff A, Behrens P, Wiebcke M (2009) J Mater Sci. doi:10.1007/s10853-009-4130-3

  39. Heinroth F, Waltz F, Wiebcke M, Behrens P (2008) Z Anorg Allg Chem. doi:10.1002/zaac.200870073

  40. Sokolnicki J (2010) J Phys : Condens Mater doi:10.1088/0953-8984/22/27/275301

  41. Zanetti-Ramos BG, Fritzen-Garcia MB, Creczynski-Pasa TB, De Oliveira CS, Pasa AA, Soldi V, Borsali R (2010) Part Sci Technol. doi:10.1080/02726351.2010.504133

  42. Tseng WJ, Lin K-C (2002) Mater Sci Eng A. doi:10.1016/S0921-5093(03)00063-7

  43. Kong D, Yang H, Yang Y, Wei S, Wang J, Cheng B (2004) Mater Lett. doi:10.1016/j.matlet.2004.06.060

  44. Witte F, Fischer J, Nellesen J, Crostack H-A, Kaese V, Pisch A, Beckmann F, Windhagen H (2006) Biomaterials. doi:10.1016/j.biomaterials.2005.07.037

  45. Shi Z, Liu M, Atrens A (2009) Corros Sci. doi:10.1016/j.corsci.2009.10.016

  46. Song G, Atrens A, Dargusch M (1999) Corros Sci. doi:10.1016/S00-10-938X(98)00121-8

Download references

Acknowledgements

We gratefully acknowledge the financial support of the Volkswagen foundation via the research initiative “Innovative Methods for Manufacturing Multifunctional Surfaces”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Behrens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waltz, F., Swider, M.A., Hoyer, P. et al. Synthesis of highly stable magnesium fluoride suspensions and their application in the corrosion protection of a Magnesium alloy. J Mater Sci 47, 176–183 (2012). https://doi.org/10.1007/s10853-011-5785-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5785-0

Keywords

Navigation