Skip to main content
Log in

Phase evolution in solution deposited Pb-deficient PLZT thin films

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Initial crystallization of Pb-deficient, lanthanum modified lead zirconate titanate (PLZT) layers followed by post-crystallization phase conversion can be used to obtain high quality PLZT thin films. However, phase evolution in Pb-deficient PLZT thin films is not well understood. To characterize phase evolution in these films, we developed a new in situ, high-temperature X-ray diffraction (XRD) measurement approach for slow heating rates. The well-characterized Pb-excess PLZT composition was used for comparison and to validate the new XRD setup described herein. During crystallization of Pb-deficient thin films, a Pb-rich/La-poor perovskite phase and Pb-poor/La-rich fluorite phase were observed to form simultaneously. The fluorite phase was observed to partially transform into a secondary perovskite phase at higher temperatures. The results obtained are discussed in view of the current understanding of phase evolution in these materials. The details of the new in situ XRD technique are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dimos D, Mueller CH (1998) Annu Rev Mater Sci 28:397

    Article  CAS  Google Scholar 

  2. Scott JF (2007) Science 315:954

    Article  CAS  Google Scholar 

  3. Muralt P (2000) J Micromech Mircoeng 10:136

    Article  CAS  Google Scholar 

  4. Auciello O, Scott JF, Ramesh R (1998) Phys Today 51:22

    Article  CAS  Google Scholar 

  5. Reaney IM, Brooks K, Klissurska R, Pawlaczyk C, Setter N (1994) J Am Ceram Soc 77:1209

    Article  CAS  Google Scholar 

  6. Brennecka GL, Tuttle BA (2007) J Mater Res 22:2868

    Article  CAS  Google Scholar 

  7. Brennecka GL, Parish CM, Tuttle BA, Brewer LN, Rodriguez MA (2008) Adv Mater 20:1407

    Article  CAS  Google Scholar 

  8. Polli AD, Lange FF, Levi CG (2000) J Am Ceram Soc 83:873

    Article  CAS  Google Scholar 

  9. Huang Z, Zhang Q, Whatmore RW (1998) J Mater Sci Lett 17:1157

    Article  CAS  Google Scholar 

  10. Chen SY, Chen IW (1998) J Am Ceram Soc 81:97

    Article  CAS  Google Scholar 

  11. Chen SY, Chen IW (1994) J Am Ceram Soc 77:2332

    Article  CAS  Google Scholar 

  12. Griswold EM, Weaver L, Sayer M, Calder ID (1995) J Mater Res 10:3149

    Article  CAS  Google Scholar 

  13. Huang Z, Zhang Q, Whatmore RW (1999) J Appl Phys 85:7355

    Article  CAS  Google Scholar 

  14. Wilkinson AP, Speck JS, Cheetham AK, Natarajan S, Thomas JM (1994) Chem Mater 6:750

    Article  CAS  Google Scholar 

  15. Chen J, Udayakumar KR, Brooks KG, Cross LE (1992) J Appl Phys 71:4465

    Article  CAS  Google Scholar 

  16. Assink RA, Schwartz RW (1993) Chem Mater 5:511

    Article  CAS  Google Scholar 

  17. Brennecka GL, Parish CM, Tuttle BA, Brewer LN (2008) J Mater Res 23:176

    Article  CAS  Google Scholar 

  18. Pramanick A, Omar S, Nino JC, Jones JL (2009) J Appl Cryst 42:490

    Article  CAS  Google Scholar 

  19. Kwok CK, Desu SB (1993) J Mater Res 8:339

    Article  Google Scholar 

  20. Chen SY, Chen IW (1994) J Am Ceram Soc 77:2337

    Article  CAS  Google Scholar 

  21. Lakeman CDE, Xu ZK, Payne DA (1995) J Mater Res 10:2042

    Article  CAS  Google Scholar 

  22. Norga GJ, Vasiliu F, Fe L, Wouters DJ, Van der Biest O (2003) J Mater Res 18:1232

    Article  CAS  Google Scholar 

  23. Kwok CK, Desu SB (1994) J Mater Res 9:1728

    Article  CAS  Google Scholar 

  24. Jacobs RN, Salamanca-Riba L (2003) J Mater Res 18:1405

    Article  CAS  Google Scholar 

  25. Sengupta SS, Ma L, Adler DL, Payne DA (1995) J Mater Res 10:1345

    Article  CAS  Google Scholar 

  26. Parish CM, Brennecka GL, Tuttle BA, Brewer LN (2008) J Mater Res 23:2944

    Article  CAS  Google Scholar 

  27. Breval E, Wang C, Dougherty JP, Gachigi KW (2005) J Am Ceram Soc 88:437

    Article  CAS  Google Scholar 

  28. Calame F, Muralt P (2007) Appl Phys Lett 90:162901

    Article  Google Scholar 

  29. Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic Press, New York

    Google Scholar 

  30. Parish CM, Brennecka GL, Tuttle BA, Brewer LN (2008) J Am Ceram Soc 91:3690

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute for NanoEngineering (NINE) and the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. JLJ acknowledges NSF for funding through award number DMR-0746902. The authors would also like to thank Dr. Valentin Craciun and MAIC at University of Florida for access to the Philips X’Pert XRD and Pat Mahoney at Sandia National Laboratories for help in preparation of samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob L. Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nittala, K., Brennecka, G.L., Tuttle, B.A. et al. Phase evolution in solution deposited Pb-deficient PLZT thin films. J Mater Sci 46, 2148–2154 (2011). https://doi.org/10.1007/s10853-010-5051-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5051-x

Keywords

Navigation