Skip to main content
Log in

Preparation and characterization of super-hydrophobic and oleophobic surface

  • ICAM 2009
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel method for preparing and characterizing super-hydrophobic and oleophobic surface is presented. Aluminum (Al) substrate was roughened by sandblasting and electrolytic etching to obtain micro- and nano-sized complex morphologies. Then, its substrate was covered by a chemically adsorbed monolayer (CAM) containing a fluorocarbon group. The surface of Al substrate roughened and covered with CAM was observed by scanning electron microscope and atomic force microscope. The roughnesses of the surface were ca. 100 μm and ca. 30–60 nm, respectively. The surface of the wettability was characterized by contact angle measurements and its surface indicated super-hydrophobicity and oleophobicity: the water contact angle (WCA) and oil contact angle (OCA) of hexadecane was 158.9° and 139.6°, respectively. The wettability was also characterized by solid surface energy. The solid surface energy of each solvent was obtained from the equation by Neumann et al. These values were extremely low, ranging from 0.31 to 1.29 mN/m. The total solid surface energy was obtained from the equation by Kaelble et al. The value was 0.3 mN/m. Their values indicated that the hydrophobicity and oleophobicity of our sample reached the highest level possible. In addition, our research demonstrates that it is easy to compare many different surfaces with super-hydrophobicity and oleophobicity using the solid surface energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wenzel RN (1936) Ind Eng Chem 28:988

    Article  CAS  Google Scholar 

  2. Ulman A (1996) Thin Solid Film 273:48

    Article  CAS  ADS  Google Scholar 

  3. Guan K, Lu B, Yin Y (2003) Surf Coat Technol 173:219. doi:10.1016/S0257-8972(03)00521-8

    Article  CAS  Google Scholar 

  4. Kiuru M, Alakoski E (2004) Mater Lett 58:2213. doi:10.1016/j.matlet.2004.01.024

    Article  CAS  Google Scholar 

  5. Zhu L, Feng Y, Ye X, Zhou Z (2006) Sens Actuators A 130–131:595. doi:10.1016/j.sna.2005.12.005

    Google Scholar 

  6. Zhang J, Huang W, Han Y (2006) Langmuir 22:2946. doi:10.1021/la053428q

    Article  CAS  PubMed  Google Scholar 

  7. Gao L, McCarthy TJ (2007) Langmuir 23:3762. doi:10.1021/la062634a

    Article  CAS  PubMed  Google Scholar 

  8. Qian B, Shen Z (2005) Langmuir 21:9007. doi:10.1021/la051308c

    Article  CAS  PubMed  Google Scholar 

  9. Zhang X, Jin M, Liu Z, Nishimoto S, Saito H, Murakami T, Fujishima A (2006) Langmuir 22:9477. doi:10.1021/la0618869

    Article  CAS  PubMed  Google Scholar 

  10. He B, Patankar NA, Lee J (2003) Langmuir 19:4999. doi:10.1021/la0268348

    Article  CAS  Google Scholar 

  11. Hosono E, Fujihara S, Honma I, Zhou H (2005) J Am Chem Soc 127:13459. doi:10.1002/adma.200500275

    Article  Google Scholar 

  12. Sagiv J (1979) Isr J Chem 18:339

    CAS  Google Scholar 

  13. Sagiv J (1980) J Am Chem Soc 102:92

    Article  CAS  Google Scholar 

  14. Ulman A (1996) Chem Rev 96:1533

    Article  CAS  PubMed  Google Scholar 

  15. Schreiber F (2000) Prog Surf Sci 65:151. doi:10.1016/S0079-6816(00)00024-1

    Article  CAS  ADS  Google Scholar 

  16. Tada T, Noriyasu H, Kawamura Y, Ohkubo Y, Ogawa K (2009) J Textile Eng 55:13. doi:10.4188/jte.55.13

    Article  Google Scholar 

  17. Yamamoto H, Ohkubo Y, Ogawa K, Utsumi K (2009) Precis Eng 33:229. doi:10.1016/j.precisioneng.2008.07.006

    Article  Google Scholar 

  18. Li D, Neumann AW (1992) J Colloid Interface Sci 148:190. doi:10.1016/0021-9797(92)90127-8

    Article  CAS  Google Scholar 

  19. Kaelble DH, Uy KC (1970) J Adhesion 2:50. doi:10.1080/0021846708544579

    Article  CAS  Google Scholar 

  20. Kaelble DH (1970) J Adhesion 2:66. doi:10.1080/0021846708544582

    Article  CAS  Google Scholar 

  21. Jańczuk B, Kerkeb ML, Biatrowicz T, González-Caballero F (1992) J Colloid Interface Sci 151:333. doi:10.1016/0021-9797(92)90482-2

    Google Scholar 

  22. Shibuichi S, Yamamoto T, Onda T, Tsuji K (1998) J Colloid Interface Sci 208:287

    Article  CAS  PubMed  Google Scholar 

  23. Han D, Steckl AJ (2009) Langmuir 25:9454. doi:10.1021/la900660v

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by Japan Aerospace Exploration Agency (JAXA). We gratefully thank Professor. S. Yoda and Dr. S. Matsumoto of JAXA for their helpful comments. In addition, we wish to thank Nano Science Corporation for help in AFM observation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Ohkubo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohkubo, Y., Tsuji, I., Onishi, S. et al. Preparation and characterization of super-hydrophobic and oleophobic surface. J Mater Sci 45, 4963–4969 (2010). https://doi.org/10.1007/s10853-010-4362-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4362-2

Keywords

Navigation