Journal of Materials Science

, 45:1

Review: current international research into cellulose nanofibres and nanocomposites

  • S. J. Eichhorn
  • A. Dufresne
  • M. Aranguren
  • N. E. Marcovich
  • J. R. Capadona
  • S. J. Rowan
  • C. Weder
  • W. Thielemans
  • M. Roman
  • S. Renneckar
  • W. Gindl
  • S. Veigel
  • J. Keckes
  • H. Yano
  • K. Abe
  • M. Nogi
  • A. N. Nakagaito
  • A. Mangalam
  • J. Simonsen
  • A. S. Benight
  • A. Bismarck
  • L. A. Berglund
  • T. Peijs
REVIEW

DOI: 10.1007/s10853-009-3874-0

Cite this article as:
Eichhorn, S.J., Dufresne, A., Aranguren, M. et al. J Mater Sci (2010) 45: 1. doi:10.1007/s10853-009-3874-0

Abstract

This paper provides an overview of recent progress made in the area of cellulose nanofibre-based nanocomposites. An introduction into the methods used to isolate cellulose nanofibres (nanowhiskers, nanofibrils) is given, with details of their structure. Following this, the article is split into sections dealing with processing and characterisation of cellulose nanocomposites and new developments in the area, with particular emphasis on applications. The types of cellulose nanofibres covered are those extracted from plants by acid hydrolysis (nanowhiskers), mechanical treatment and those that occur naturally (tunicate nanowhiskers) or under culturing conditions (bacterial cellulose nanofibrils). Research highlighted in the article are the use of cellulose nanowhiskers for shape memory nanocomposites, analysis of the interfacial properties of cellulose nanowhisker and nanofibril-based composites using Raman spectroscopy, switchable interfaces that mimic sea cucumbers, polymerisation from the surface of cellulose nanowhiskers by atom transfer radical polymerisation and ring opening polymerisation, and methods to analyse the dispersion of nanowhiskers. The applications and new advances covered in this review are the use of cellulose nanofibres to reinforce adhesives, to make optically transparent paper for electronic displays, to create DNA-hybrid materials, to generate hierarchical composites and for use in foams, aerogels and starch nanocomposites and the use of all-cellulose nanocomposites for enhanced coupling between matrix and fibre. A comprehensive coverage of the literature is given and some suggestions on where the field is likely to advance in the future are discussed.

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • S. J. Eichhorn
    • 1
  • A. Dufresne
    • 2
  • M. Aranguren
    • 3
  • N. E. Marcovich
    • 3
  • J. R. Capadona
    • 4
  • S. J. Rowan
    • 5
  • C. Weder
    • 6
  • W. Thielemans
    • 7
  • M. Roman
    • 8
  • S. Renneckar
    • 8
  • W. Gindl
    • 9
  • S. Veigel
    • 10
  • J. Keckes
    • 11
  • H. Yano
    • 12
  • K. Abe
    • 12
  • M. Nogi
    • 12
  • A. N. Nakagaito
    • 12
  • A. Mangalam
    • 13
  • J. Simonsen
    • 14
  • A. S. Benight
    • 15
  • A. Bismarck
    • 16
  • L. A. Berglund
    • 17
  • T. Peijs
    • 18
  1. 1.Materials Science CentreSchool of Materials and the Northwest Composites CentreManchesterUK
  2. 2.Grenoble Institute of TechnologyThe International School of Paper, Print Media & Biomaterials (Grenoble INP Pagora)Saint Martin D’Hères CedexFrance
  3. 3.National Institute of Research in Science and Technology of Materials (INTEMA)Universidad Nacional de Mar del PlataMar del PlataArgentina
  4. 4.Rehabilitation Research and DevelopmentLouis Stokes Cleveland DVA Medical CenterClevelandUSA
  5. 5.Department of Macromolecular Science and EngineeringCase Western Reserve University (CWRU)ClevelandUSA
  6. 6.Adolphe Merkle InstituteUniversity of FribourgFribourgSwitzerland
  7. 7.School of Chemistry and Process and Environmental Research Division, Faculty of EngineeringThe University of NottinghamNottinghamUK
  8. 8.Department of Wood Science and Forest ProductsVirginia TechBlacksburgUSA
  9. 9.Department of Materials Science and Process EngineeringUniversity of Natural Resources and Applied Life SciencesBOKU-ViennaAustria
  10. 10.Wood K plus, Competence Centre for Wood Composites and Wood ChemistryLinzAustria
  11. 11.Department of Materials Physics, Erich Schmid Institute of Materials Science, Austrian Academy of SciencesUniversity of LeobenLeobenAustria
  12. 12.Research Institute for Sustainable HumanosphereKyoto UniversityKyotoJapan
  13. 13.Department of Wood Science and Forest ProductsVirginia TechBlacksburgUSA
  14. 14.Department of Wood Science & EngineeringOregon State UniversityCorvallisUSA
  15. 15.Departments of Chemistry & PhysicsPortland State UniversityPortlandUSA
  16. 16.Department of Chemical EngineeringPolymer and Composite Engineering Group (PACE), Imperial College LondonLondonUK
  17. 17.Department of Fibre & Polymer TechnologyWallenberg Wood Science CentreStockholmSweden
  18. 18.Centre for Materials Research, Queen MaryUniversity of LondonLondonUK