Skip to main content
Log in

Development of titanium-doped carbon–carbon composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The development of titanium-doped carbon matrix–carbon fibre reinforced composites (CCCs) via liquid impregnation of carbon fibre preforms using mesophase pitch is studied. Two different approaches for introducing the dopant into the carbon material are investigated. One consists of doping the matrix precursor followed by the densification of the preform with the doped precursor. The second approach consists of doping the porous preform prior to densification with the undoped mesophase pitch. Titanium-doped CCCs with a very fine distribution of dopant (in the nanometric scale) are obtained by adding TiC nanoparticles to the matrix precursor. Thermal decomposition of titanium butoxide on the carbon preform prior to densification yields doped CCCs with higher titanium content, although with larger dopant size. The combination of these two methods shows the best results in terms of dopant content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Merola M, Dänner W, Pick M (2005) Fusion Eng Des 75–79:325

    Article  Google Scholar 

  2. Linke J, Amouroux SA, Berthe E, Koza Y, Kühnlein W, Rödig M (2003) Fusion Eng Des 66–68:395

    Article  Google Scholar 

  3. Hirai T, Linke J, Kühnlein W, Sergienko G, Brezinsek S (2003) J Nucl Mater 321:110

    Article  CAS  Google Scholar 

  4. Oya A, Marsh H (1982) J Mater Sci 17:309. doi:https://doi.org/10.1007/BF00591464

    Article  CAS  Google Scholar 

  5. Qiu H, Song Y, Liu L, Zhai G, Shi J (2003) Carbon 41:973

    Article  CAS  Google Scholar 

  6. Schwörer R, Plank H, Roth J (1997) J Nucl Mater 241–243:1156

    Article  Google Scholar 

  7. Nakamura K, Dairaku M, Akiba M, Okumura Y (1997) J Nucl Mater 241–243:1142

    Article  Google Scholar 

  8. Wu CH, Alessandrini C, Moormann R, Rubel M, Scherzer BMU (1995) J Nucl Mater 220–222:860

    Article  Google Scholar 

  9. Ordás N, García-Rosales C, Lindig S, Balden M, Wang H (2004) Phys Script T111:190

    Article  Google Scholar 

  10. Hu XB, Cheng G, Zhao BY, Wang HM, Hu KA (2004) Carbon 42:381

    Article  CAS  Google Scholar 

  11. López-Galilea I, Garcîa-Rosales C, Pintsuk G, Linke J (2007) Phys Script T128:60

    Article  Google Scholar 

  12. García-Rosales C, Ordás N, Oyarzabal E, Echeberría J, Balden M, Lindig S, Behrisch R (2002) J Nucl Mater 307–311:1282

    Article  Google Scholar 

  13. Garcia-Rosales C, Balden M (2001) J Nucl Mater 290–293:173

    Article  Google Scholar 

  14. Carreira P, Martinez-Escandell M, Santamaría R, Rodríguez-Reinoso F (2001) Carbon 39:1001

    Article  CAS  Google Scholar 

  15. Ramos-Fernández JM, Martínez-Escandell M, Rodríguez-Reinoso F (2007) J Anal Appl Pyrol 80(2):477

    Article  Google Scholar 

  16. Mochida I, Korai Y, Ku CH, Watanabe F, Sakai Y (2000) Carbon 38:305

    Article  CAS  Google Scholar 

  17. White JL, Gopalkrishnan MK, Fathollahi B (1994) Carbon 32:301

    Article  CAS  Google Scholar 

  18. Fathollahi B, Chau PC, White JL (2005) Carbon 43:125

    Article  CAS  Google Scholar 

  19. Fathollahi B, Chau PC, White JL (2005) Carbon 43:135

    Article  CAS  Google Scholar 

  20. Manocha LM, Warrier A, Manocha S, Sathiyamoorty D, Banerjee S (2006) Carbon 44:488

    Article  CAS  Google Scholar 

  21. Méndez A, Santamaría R, Granda M, Menéndez R (2008) J Mater Sci 43:906. doi:https://doi.org/10.1007/s10853-007-2214-5

    Article  Google Scholar 

  22. Wang ZC, Chen JF, Hu XF (2000) Mater Lett 43:87

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been performed within the framework of the Integrated European Project “ExtreMat” (contract NMP-CT-2004-500253) with financial support by the European Community and the Spanish Education Ministry (Programa Nacional de Cooperación Internacional de Ciencia y Tecnología, Acciones Complementarias, MAT2004-22787-E). The authors would like to thank Karl Hingst and Sandra Sitter, from SGL Carbon Group, for supplying the carbon fibre preforms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Blanco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Centeno, A., Santamaría, R., Granda, M. et al. Development of titanium-doped carbon–carbon composites. J Mater Sci 44, 2525–2532 (2009). https://doi.org/10.1007/s10853-009-3327-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3327-9

Keywords

Navigation