Skip to main content
Log in

Effects of strain rate and elevated temperature on electromagnetic radiation emission during plastic deformation and crack propagation in ASTM B 265 grade 2 titanium sheets

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Some basic aspects of electromagnetic radiation (EMR) emission during quasi-static plastic deformation and crack propagation in ASTM B 265 grade 2 titanium sheets are reported in this paper. It has been observed that titanium emits several intermittent EMR signals starting near the yield and continuing up to fracture. The EMR emissions are sensitive to the applied strain rates. The number of EMR emissions shows a parabolic variation with strain rate, exhibiting a maxima. It appears that the temporary pinnings of the dislocations injected from the crack tip, which is essential for the emission of EMR as described in a recent model by the authors, do not adequately occur at high as well as low strain rates. At elevated temperatures, the square of the EMR amplitude is observed to be proportional to \( \exp {\left( { - {mU} \mathord{\left/ {\vphantom {{mU} {kT}}} \right. \kern-\nulldelimiterspace} {kT}} \right)}, \) where U is the activation energy for the movement of jogs, k the Boltzmann constant, T the temperature and m ≤ 1.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Misra A (1973) Indian J Pure Appl Phys 11:419

    CAS  Google Scholar 

  2. Misra A (1975) Nature (Lond) 254:133. doi:https://doi.org/10.1038/254133a0

    Article  CAS  Google Scholar 

  3. Misra A (1975) cited in Ninth yearbook to the encyclopedia of science and technology. Edizioni Scientific E Techniche, Mondadori, Italy

  4. Misra A (1977) Phys Lett 62A:234

    Article  CAS  Google Scholar 

  5. Misra A (1978) Appl Phys 16:195. doi:https://doi.org/10.1007/BF00930387

    Article  CAS  Google Scholar 

  6. Misra A (1981) J Sci Ind Res 40:22

    Google Scholar 

  7. Misra A, Ghosh S (1980) Indian J Pure Appl Phys 18:851

    CAS  Google Scholar 

  8. Mishra D, Misra A (1980) Neurol India XXVIII:234

    Google Scholar 

  9. Misra A, Ghosh S (1981) Appl Phys 23:387. doi:https://doi.org/10.1007/BF00903221

    Article  Google Scholar 

  10. Misra A, Varshney BG (1990) J Magn Magn Mater 89:159. doi:https://doi.org/10.1016/0304-8853(90)90720-B

    Article  CAS  Google Scholar 

  11. Misra A, Kumar A (2004) Int J Fract 127:387. doi:https://doi.org/10.1023/B:FRAC.0000037676.32062.cb

    Article  CAS  Google Scholar 

  12. Kumar A, Misra A (2005) J Magn Magn Mater 285:71. doi:https://doi.org/10.1016/j.jmmm.2004.07.017

    Article  CAS  Google Scholar 

  13. Srilakshmi B, Misra A (2005) Mater Sci Eng A 404:99. doi:https://doi.org/10.1016/j.msea.2005.05.100

    Article  Google Scholar 

  14. Srilakshmi B, Misra A (2005) J Mater Sci 40:6079. doi:https://doi.org/10.1007/s10853-005-1293-4

    Article  CAS  Google Scholar 

  15. Srilakshmi B, Misra A (2005) Manuf Tech Res Int J 1:97

    Google Scholar 

  16. Kumar R, Misra A (2006) J Zhejiang Univ Sci A 7(11):1800

    Article  CAS  Google Scholar 

  17. Kumar R, Misra A (2007) Mater Sci Eng A 454–455:203. doi:https://doi.org/10.1016/j.msea.2006.11.011

    Article  Google Scholar 

  18. Misra A, Prasad RC, Chauhan VS, Srilakshmi B (2007) Int J Fract 145:99. doi:https://doi.org/10.1007/s10704-007-9107-0

    Article  CAS  Google Scholar 

  19. Tudik AA, Valuev NP (1980) Sov Tech Phys Lett 6:37

    Google Scholar 

  20. Perelman ME, Khatiashvili NG (1980) Bull Acad Sci Georgian SSR 99:357

    Google Scholar 

  21. Dickinson JT, Jenson LC, Bhattacharya SK (1985) J Vac Sci Technol 3:1398. doi:https://doi.org/10.1116/1.572788

    Article  CAS  Google Scholar 

  22. Jagasivamani V (1987) Some studies on the electromagnetic and acoustic emissions associated with deformation and fracture of metallic materials. PhD Dissertation, I.I.T., Madras

  23. Jagasivamani V, Iyer KJ (1988) Mater Lett 6:418. doi:https://doi.org/10.1016/0167-577X(88)90043-2

    Article  CAS  Google Scholar 

  24. Muthukumaran S, Kumar P, Pandey VK, Mukherjee SK (2008) Int J Adv Manuf Technol 36:249. doi:https://doi.org/10.1007/s00170-006-0840-8

    Article  Google Scholar 

  25. Molotskii MI (1980) Sov Tech Phys Lett 6:22

    Google Scholar 

  26. Kolsky H (1954) Nature 173:77. doi:https://doi.org/10.1038/173077a0

    Article  Google Scholar 

  27. Brown W, Schmidt M, Dzwilewski P, Samaras T (2005) Electromagnetic emissions in case of detonation of metal encased explosives. Proceedings of 14th APS Topical Conference on Shock compression of Condensed Matter, Baltimore, MD, July 31–August 5

  28. Brown W, Schmidt M, Calahan K (2005) Electromagnetic radiation from the high strain rate fracture of mild carbon-steel. Proceedings of 14th APS Topical Conference on Shock compression of Condensed Matter, Baltimore, MD, July 31–August 5

  29. Srilakshmi B, Misra A (2004) Electromagnetic radiation during crack propagation in metals—a new trend in the development of smart materials. Proceedings of International Symposium on Smart Materials and Systems, Chennai, India, 15–17 December

  30. Srilakshmi B, Misra A (2005) Development of smart materials through electromagnetic radiation in metal coating. Proceedings of International Symposium on Intelligence based Materials and Manufacturing, Ranchi, India, 18–20 August

  31. Kumar R, Misra A (2006) A new approach for smart sensors in design against metallic failure. International Conference on Resource Utilization and Intelligent System, Erode, India, 4–6 January

  32. Dieter GE (1988) Mechanical metallurgy. Mc Graw-Hill Book Co., London, p 295

    Google Scholar 

  33. Cottrell AH (1963) Proc R Soc A 276:1

    Google Scholar 

  34. Nabarro FRN (1967) Theory of crystal dislocations. Clarendon Press, Oxford, p 615

    Google Scholar 

  35. Cottrell AH (1953) Dislocations and plastic flow in crystals. Clarendon Press, Oxford, p 174

    Google Scholar 

  36. Boyer R, Welsch G, Collings EW (1994) Materials properties handbooks: titanium alloys. ASM International, p 178

Download references

Acknowledgement

Research grant from the Department of Science and Technology, Government of India, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Chauhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chauhan, V.S., Misra, A. Effects of strain rate and elevated temperature on electromagnetic radiation emission during plastic deformation and crack propagation in ASTM B 265 grade 2 titanium sheets. J Mater Sci 43, 5634–5643 (2008). https://doi.org/10.1007/s10853-008-2590-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2590-5

Keywords

Navigation