Journal of Materials Science

, Volume 42, Issue 20, pp 8581–8591

Synthesis and characterization of porous κ-carrageenan/calcium phosphate nanocomposite scaffolds

  • Ana Luísa Daniel-da-Silva
  • Augusto B. Lopes
  • Ana M. Gil
  • Rui N. Correia
Article

DOI: 10.1007/s10853-007-1851-z

Cite this article as:
Daniel-da-Silva, A.L., Lopes, A.B., Gil, A.M. et al. J Mater Sci (2007) 42: 8581. doi:10.1007/s10853-007-1851-z

Abstract

The polysaccharide κ-carrageenan was used in the production of macroporous composites containing nanosized hydroxyapatite, with potential application in bone tissue engineering. Biodegradable composite scaffolds were prepared combining in situ co-precipitation of calcium phosphates with a freeze-drying technique. The effect of the Ca/P molar ratio and total ceramic content on the chemical composition, microstructure and mechanical performance of the scaffolds were investigated by thermal analysis, X-ray diffraction, FTIR, transmission electron microscopy, scanning electron microscopy, He porosimetry and compressive tests. A mixture of amorphous calcium phosphates and/or nanosized calcium-deficient hydroxyapatite was obtained in most of the composites. The formation of hydroxyapatite was induced by higher Ca/P ratios, probably due to competing reticulation of the biopolymer with calcium cations. The composite scaffolds presented interconnected pores (50–400 μm) and porosity around 97% and calcium phosphates were uniformly dispersed in the κ-carrageenan matrix. Both microstructure and compressive mechanical properties of the scaffolds were affected by the ceramic content and, for a Ca/P molar ratio of 1.67, maximum compressive strength was achieved for a ceramic content of ca. 25 wt%. Above this value the structural integrity of the composite was damaged and a dramatic decrease in mechanical strength was verified. Compressive mechanical properties of the composites were improved by increasing Ca/P atom ratio.

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Ana Luísa Daniel-da-Silva
    • 1
  • Augusto B. Lopes
    • 2
  • Ana M. Gil
    • 1
  • Rui N. Correia
    • 2
  1. 1.Department of Chemistry, CICECOUniversity of AveiroAveiroPortugal
  2. 2.Department of Ceramics and Glass EngineeringUniversity of AveiroAveiroPortugal