Skip to main content
Log in

Inf-structuring Functions: A Unifying Theory of Connections and Connected Operators

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

During the last decade, several theories have been proposed in order to extend the notion of set connections in mathematical morphology. These new theories were obtained by generalizing the definition to wider spaces (namely complete lattices) and/or by relaxing some hypothesis. Nevertheless, the links among those different theories are not always well understood, and this work aims at defining a unifying theoretical framework. The adopted approach relies on the notion of inf-structuring function which is simply a mapping that associates a set of sub-elements to each element of the space. The developed theory focuses on the properties of the decompositions given by an inf-structuring function rather than in trying to characterize the properties of the set of connected elements as a whole. We establish several sets of inf-structuring function properties that enable to recover the existing notions of connections, hyperconnections, and attribute space connections. Moreover, we also study the case of grey-scale connected operators that are obtained by stacking set connected operators and we show that they can be obtained using specific inf-structuring functions. This work allows us to better understand the existing theories, it facilitates the reuse of existing results among the different theories and it gives a better view on the unexplored areas of the connection theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. There is a missing condition in Proposition 3 of [49] (Proposition 4 of [47]) as the property P3 is indeed only equivalent to P2 and P1 if the lattice is co-prime. We thank Pr. Ch. Ronse for pointing out to us this mistake.

References

  1. Alsaody, S., Serra, J.: Connective segmentation generalized to arbitrary complete lattices. In Soille P., Pesaresi M., Ouzounis G.K. (eds.) Mathematical Morphology and its Applications to Image and Signal Processing. Lecture Notes in Computer Science, vol. 6671, pp. 61–72. Springer, Berlin (2011)

  2. Angulo, J., Serra, J.: Morphological coding of color images by vector connected filters. In: Proceedings of the Seventh International Symposium on Signal Processing and Its Applications 2003, vol. 1, pp. 69–72 (2003)

  3. Berger, Ch., Geraud, T., Levillain, R., Widynski, N., Baillard, A., Bertin, E.: Effective component tree computation with application to pattern recognition in astronomical imaging. IEEE Int. Conf. Image Process. 4, 41–44 (2007)

    Google Scholar 

  4. Birkhoff, G.: Lattice Theory. American Mathematical Society, Providence (1984)

    Google Scholar 

  5. Braga-Neto, U.: Multiscale connected operators. J. Math. Imaging Vis. 22(2–3), 199–216 (2005)

    Article  MathSciNet  Google Scholar 

  6. Braga-Neto, U., Goutsias, J.: Connectivity on complete lattices: new results. Comput. Vis. Image Underst. 85(1), 22–53 (2002)

    Article  MATH  Google Scholar 

  7. Braga-Neto, U., Goutsias, J.: A multiscale approach to connectivity. Comput. Vis. Image Underst. 89(1), 70–107 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Braga-Neto, U., Goutsias, J.: A theoretical tour of connectivity in image processing and analysis. J. Math. Imaging Vis. 19(1), 5–31 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Braga-Neto, U., Goutsias, J.: Constructing multiscale connectivities. Comput. Vis. Image Underst. 99(1), 126–150 (2005)

    Article  Google Scholar 

  10. Braga-Neto, U., Goutsias, J.: Object-based image analysis using multiscale connectivity. IEEE Trans. Pattern Anal. Mach. Intell. 27(6), 892–907 (2005)

    Article  Google Scholar 

  11. Carlinet, E., Géraud, T.: A comparison of many max-tree computation algorithms. In: Luengo Hendriks C.L., Borgefors G., Strand R. (eds.) Mathematical Morphology and its Applications to Signal and Image Processing. Lecture Notes in Computer Science, vol. 7883, pp. 73–85. Springer, Berlin (2013)

  12. Chassery, J.M.: Connectivity and consecutivity in digital pictures. Comput. Gr. Image Process. 9, 294–300 (1979)

    Article  Google Scholar 

  13. Cousty, J., Najman, L., Perret, B.: Constructive links between some morphological hierarchies on edge-weighted graphs. In: Luengo Hendriks C.L., Borgefors G., Strand R. (eds.) Mathematical Morphology and its Applications to Signal and Image Processing. Lecture Notes in Computer Science, vol. 7883, pp. 86–97. Springer, Berlin (2013)

  14. Crespo, J.: Morphological connected filters and intra-region smoothing for image segmentation. PhD thesis, Georgia Institute of Technology, Atlanta, GA, USA, (1993). UMI Order No. GAX94-15632

  15. Crespo, J.: Adjacency stable connected operators and set levelings. Image Vis. Comput. 28(10), 1483–1490 (2010)

    Article  Google Scholar 

  16. Crespo, J., Maojo, V.: The strong property of morphological connected alternated filters. J. Math. Imaging Vis. 32(3), 251–263 (2008)

    Article  MathSciNet  Google Scholar 

  17. Crespo, J., Schafer, R.W.: Locality and adjacency stability constraints for morphological connected operators. J. Math. Imaging Vis. 7(1), 85–102 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Géraud, T., Carlinet, E., Crozet, S., Najman, L.: A quasi-linear algorithm to compute the tree of shapes of n-D images. In: Luengo Hendriks C.L., Borgefors G., Strand R. (eds.) Mathematical Morphology and its Applications to Signal and Image Processing. Lecture Notes in Computer Science, vol. 7883, pp. 97–108. Springer, Berlin (2013)

  19. Gimenez, D., Evans, A.N.: An evaluation of area morphology scale-spaces for colour images. Comput. Vis. Image Underst. 110(1), 32–42 (2008)

    Article  Google Scholar 

  20. Grätzer, G.: General Lattice Theory. Birkhauser, Basel (2007)

    Google Scholar 

  21. Heijmans, H.J.A.M.: Morphological Image Operators. Academic Press, Boston (1994)

    MATH  Google Scholar 

  22. Heijmans, H.J.A.M.: Connected morphological operators for binary images. Comput. Vis. Image Underst. 73(1), 99–120 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Janowitz, M.F.: A model for ordinal filtering of digital images. Stat. Image Process. Gr. 72, 25–41 (1986)

    MathSciNet  Google Scholar 

  24. Jones, R.: Connected filtering and segmentation using component trees. Comput. Vis. Image Underst. 75(3), 215–228 (1999)

    Article  Google Scholar 

  25. Lantuéjoul, C., Beucher, S.: On the use of the geodesic metric in image analysis. J. Microsc. 121, 29–49 (1980)

    Google Scholar 

  26. Lantuéjoul, C., Maisonneuve, F.: Geodesic methods in quantitative image analysis. Pattern Recognit. 17, 177–187 (1984)

    Article  MATH  Google Scholar 

  27. Maragos, P., Ziff, R.D.: Threshold superposition in morphological image analysis systems. IEEE Trans. Pattern Anal. Mach. Intell. 12(5), 498–504 (1990)

    Article  Google Scholar 

  28. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22(10), 761–767 (2004)

    Article  Google Scholar 

  29. Meyer, F.: From connected operators to levelings. In: Heijmans, H.J.A.M., Roerdink, J.B.T.M. (eds.) Mathematical Morphology and its Applications to Image and Signal Processing, pp. 191–198. Kluwer Academic Publishers, Dordrecht (1998)

    Google Scholar 

  30. Meyer, F.: The levelings. In: Heijmans, H.J.A.M., Roerdink, J.B.T.M. (eds.) Mathematical Morphology and its Applications to Image and Signal Processing, pp. 199–206. Kluwer Academic Publishers, Dordrecht (1998)

  31. Meyer, F., Maragos, P.: Morphological scale-space representation with levelings. In: Proceedings of the Second International Conference on Scale-Space Theories in Computer Vision, SCALE-SPACE ’99, pp. 187–198. Springer, London (1999)

  32. Naegel, B., Passat, N.: Component-trees and multi-value images: a comparative study. In: Wilkinson M.H.F., Roerdink J.B.T.M. (eds.) Mathematical Morphology and its Application to Signal and Image Processing. Lecture Notes in Computer Science, vol. 5720, pp. 261–271. Springer, Berlin (2009)

  33. Naegel, B., Passat, N.: Towards connected filtering based on component-graphs. In: Luengo Hendriks C.L., Borgefors G., Strand R. (eds.) Mathematical Morphology and its Applications to Signal and Image Processing. Lecture Notes in Computer Science, vol. 7883, pp. 353–364. Springer, Berlin (2013)

  34. Naegel, B., Passat, N., Boch, N., Kocher, M.: Segmentation using vector-attribute filters: methodology and application to dermatological imaging. In: Bannon, G.J.F., Barrera, J., Braga-Neto, U.M. (eds.) International Symposium on Mathematical Morphology, Rio de Janeiro, Brazil, vol. 1, pp. 239–250 (2007)

  35. Naegel, B., Wendling, L.: A document binarization method based on connected operators. Pattern Recognit. Lett. 31(11), 1251–1259 (2010)

    Article  Google Scholar 

  36. Nagao, M., Matsuyama, T., Ikeda, Y.: Region extraction and shape analysis in aerial photographs. Comput. Gr. Image Process. 10(3), 195–223 (1979)

    Article  Google Scholar 

  37. Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE Trans. Image Process. 15(11), 3531–3539 (2006)

    Article  Google Scholar 

  38. Najman, L., Cousty, J., Perret, B.: Playing with Kruskal: algorithms for morphological trees in edge-weighted graphs. In: Luengo Hendriks C.L., Borgefors G., Strand R. (eds.) Mathematical Morphology and its Applications to Signal and Image Processing, Lecture Notes in Computer Science, vol. 7883, pp. 135–146 (2013)

  39. Nempont, O., Atif, J., Angelini, E., Bloch, I.: A new fuzzy connectivity measure for fuzzy sets. J. Math. Imaging Vis. 34(2), 107–136 (2009)

    Article  MathSciNet  Google Scholar 

  40. Nogly, D., Schladt, M.: Digital topology on graphs. Comput. Vis. Image Underst. 63, 394–396 (1996)

    Article  MATH  Google Scholar 

  41. Ouzounis, G.K., Pesaresi, Martino, Soille, P.: Differential area profiles: decomposition properties and efficient computation. IEEE Trans. Pattern Anal. Mach. Intell. 34(8), 1533–1548 (2012)

    Article  Google Scholar 

  42. Ouzounis, G.K., Wilkinson, M.H.F.: Mask-based second-generation connectivity and attribute filters. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 990–1004 (2007)

    Article  Google Scholar 

  43. Ouzounis, G.K., Wilkinson, M.H.F.: Partition-induced connections and operators for pattern analysis. Pattern Recognit. 43(10), 3193–3207 (2010)

    Article  MATH  Google Scholar 

  44. Ouzounis, G.K., Wilkinson, M.H.F.: Hyperconnected attribute filters based on k-flat zones. IEEE Trans. Pattern Anal. Mach. Intell. 33(2), 224–239 (2011)

    Article  Google Scholar 

  45. Perret, B.: Inf-structuring functions and self-dual marked flattenings in bi-Heyting algebra. In: Luengo Hendriks C.L., Borgefors G., Strand R. (eds.) Mathematical Morphology and its Applications to Signal and Image Processing. Lecture Notes in Computer Science, vol. 7883, pp. 365–376. Springer, Berlin (2013)

  46. Perret, B., Cousty, J., Tankyevych, O., Talbot, H., Passat, N.: Directed connected operators: asymmetric hierarchies for image filtering and segmentation. Technical report, Laboratoire d’Informatique Gaspard-Monge - LIGM, Université Paris Est (2013). http://hal.archives-ouvertes.fr/hal-00869727. Accessed 18 June 2014

  47. Perret B., Lefèvre S., Collet C.: Toward a new axiomatic for hyper-connections. In: Soille P., Pesaresi M., Ouzounis G.K. (eds.) Proceedings of the 10th International Symposium on Mathematical Morphology and its Applications to Image and Signal Processing (ISMM 2011), Verbania-Intra, Italy, 6–8 July 2011. Lecture Notes in Computer Science, vol. 6671, pp. 85–95. Springer, Berlin (2011)

  48. Perret, B., Lefèvre, S., Collet, C., Slezak, E.: Connected component trees for multivariate image processing and applications in astronomy. In: IAPR, International Conference on Pattern Recognition, pp. 4089–4092 (2010)

  49. Perret, B., Lefèvre, S., Collet, C., Slezak, É.: Hyperconnections and hierarchical representations for grayscale and multiband image processing. IEEE Trans. Image Process. 21(1), 14–27 (2012)

    Article  MathSciNet  Google Scholar 

  50. Ronse, C.: Set-theoretical algebraic approaches to connectivity in continuous or digital spaces. J. Math. Imaging Vis. 8(1), 41–58 (1998)

    Article  MathSciNet  Google Scholar 

  51. Ronse, C.: Partial partitions, partial connections and connective segmentation. J. Math. Imaging Vis. 32(2), 97–125 (2008)

    Article  MathSciNet  Google Scholar 

  52. Ronse, C.: Idempotent block splitting on partial partitions, I: isotone operators. Order 28(2), 273–306 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  53. Ronse, C.: Idempotent block splitting on partial partitions, II: non-isotone operators. Order 28(2), 307–339 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  54. Ronse, C.: Orders on partial partitions and maximal partitioning of sets. In: Soille P., Pesaresi M., Ouzounis G.K. (eds.) Mathematical Morphology and its Applications to Image and Signal Processing. Lecture Notes in Computer Science, vol. 6671, pp. 49–60. Springer, Berlin (2011)

  55. Ronse, C.: Axiomatics for oriented connectivity. Pattern Recognit. Lett. 1–9 (2014). doi:10.1016/j.patrec.2014.03.020

  56. Ronse, C., Heijmans, H.J.A.M.: The algebraic basis of mathematical morphology: II. Openings and closings. Comput. Vis. Gr. Image Process. Image Underst. 54(1), 74–97 (1991)

    MATH  Google Scholar 

  57. Ronse, C., Serra, J.: Geodesy and connectivity in lattices. Fundam. Inform. 46(4), 349–395 (2001)

    MATH  MathSciNet  Google Scholar 

  58. Salembier, P.: Connected operators based on tree pruning strategies. In: Najman, L., Talbot, H. (eds.) Mathematical Morphology, pp. 179–198. Wiley, Hoboken (2010)

    Google Scholar 

  59. Salembier, P., Oliveras, A., Garrido, L.: Anti-extensive connected operators for image and sequence processing. IEEE Trans. Image Process. 7(4), 555–570 (1998)

    Article  Google Scholar 

  60. Salembier, P., Serra, J.: Flat zones filtering, connected operators, and filters by reconstruction. IEEE Trans. Image Process. 4(8), 1153–1160 (1995)

    Article  Google Scholar 

  61. Serra, J.: Mathematical morphology for Boolean lattices. In: Serra, J. (ed.) Image Analysis and Mathematical Morphology. II: Theoretical Advances, pp. 37–58. Academic Press, London (1988)

    Google Scholar 

  62. Serra, J.: Connectivity on complete lattices. J. Math. Imaging Vis. 9(3), 231–251 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  63. Serra, J.: Connections for sets and functions. Fundam. Inform. 41(1–2), 147–186 (2000)

    MATH  MathSciNet  Google Scholar 

  64. Serra, J.: Morphological segmentations of colour images. In: Ronse, C., Najman, L., Decencière, E. (eds.) Mathematical Morphology: 40 Years On. Computational Imaging and Vision, vol. 30, pp. 151–176. Springer, Dordrecht (2005)

    Chapter  Google Scholar 

  65. Serra, J.: A lattice approach to image segmentation. J. Math. Imaging Vis. 24(1), 83–130 (2006)

    Article  MathSciNet  Google Scholar 

  66. Serra, J., Salembier, P.: Connected operators and pyramids. In: Proceedings of SPIE, Algebra and Morphological Image Processing IV, vol. 2030, pp. 65–76 (1993)

  67. Tankyevych, O., Talbot, H., Passat, N.: Semi-connections and hierarchies. In: Luengo Hendriks C.L., Borgefors G., Strand R. (eds.) Mathematical Morphology and its Applications to Signal and Image Processing. Lecture Notes in Computer Science, vol. 7883, pp. 157–168 (2013)

  68. Tushabe, F.B.: Extending attribute filters to color processing and multi-media applications. PhD thesis, University of Groningen (2010)

  69. Weber, K.R., Acton, S.T.: On connected operators in color image processing. J. Electron. Imaging 13(3), 619–629 (2004)

    Article  Google Scholar 

  70. Wendt, P., Coyle, E.J., Gallagher Jr, N.C.: Stack filters. IEEE Trans. Acoust. Speech Signal Process. 34(4), 898–911 (1986)

    Article  Google Scholar 

  71. Westenberg, M.A., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Volumetric attribute filtering and interactive visualization using the max-tree representation. IEEE Trans. Image Process. 16(12), 2943–2952 (2007)

  72. Wilkinson, M.H.F.: Attribute-space connectivity and connected filters. Image Vis. Comput. 25(4), 426–435 (2007)

    Article  Google Scholar 

  73. Wilkinson, M.H.F.: An axiomatic approach to hyperconnectivity. In: Wilkinson M.H.F., Roerdink J.B.T.M. (eds.) Proceedings of the 9th International Symposium on Mathematical Morphology and its Application to Signal and Image Processing (ISMM 2009), Groningen, The Netherlands, 24–27 August 2009. Lecture Notes in Computer Science, vol. 5720, pp. 35–46. Springer, Berlin (2009)

  74. Wilkinson, M.H.F.: Hyperconnectivity, attribute-space connectivity and path openings: theoretical relationships. In: Wilkinson M.H.F., Roerdink J.B.T.M. (eds.) Proceedings of the 9th International Symposium on Mathematical Morphology and its Application to Signal and Image Processing (ISMM 2009), Groningen, The Netherlands, 24–27 August 2009. Lecture Notes in Computer Science, vol. 5720, pp. 47–58. Springer, Berlin (2009)

  75. Wilkinson, M.H.F.: Hyperconnections and openings on complete lattices. In: Soille P., Pesaresi M., Ouzounis G.K. (eds.) Proceedings of the 10th International Symposium on Mathematical Morphology and its Applications to Image and Signal Processing (ISMM 2011), Verbania-Intra, Italy, 6–8 July 2011. Lecture Notes in Computer Science, vol. 6671, pp. 73–84. Springer, Berlin (2011)

  76. Xu Y., Géraud T., Najman L.: Morphological filtering in shape spaces: applications using tree-based image representations. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 485–488 (2012)

Download references

Acknowledgments

I warmly thank the coordinating editor, Pr. Ch. Ronse, whose meticulous work has greatly contributed to the correctness of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Perret.

Appendix: Max-sup Coherence and Chain-sup Completness

Appendix: Max-sup Coherence and Chain-sup Completness

The following example shows a max-sup coherent set that is not chain-sup complete. We consider the complete lattice of functions from \([0,1]\) to \([0,1]\) with the classical pointwise partial order, infimum, and supremum. The set \(E\) is composed of two subsets : an infinite chain of flat functions that is not chain sup-complete and an infinite anti-chain of functions whose supremum is equal to the supremum of the family of flat functions: \(E = \left\{ g_k\right\} _{k\in [0,1[} \cup \left\{ f_k\right\} _{k\in [0,1[}\) with \(\left\{ g_k\right\} _{k\in [0,1[}\) the chain of flat functions defined by \(\forall z\in [0,1],\ g_k(z) = k \) and \(\left\{ f_k\right\} _{k\in [0,1[}\) the anti-chain of functions defined by: \(\forall z\in [0,1],\ f_k(z)\) equals \(1\) if \(k=z\) and \(k\) otherwise. Note that we have: \(\max \left\{ g_k\right\} _{k\in [0,1[}=\emptyset \), \(\max \left\{ f_k\right\} _{k\in [0,1[}=\left\{ f_k\right\} _{k\in [0,1[}\), and \(\max (E)=\left\{ f_k\right\} _{k\in [0,1[}\).

\(E\) is not chain-sup-complete as the family \(\left\{ g_k\right\} _{k\in [0,1[}\) forms a chain but \(\bigvee \left\{ g_k\right\} _{k\in [0,1[} = g_1\) the constant function of value 1 does not belong to \(E\). In fact, we can easily see that all the chains that are not sup-complete in \(E\) contains \(\left\{ g_k\right\} _{k\in ]l,1[}\) with some \(l\in [0,1[\) and so we can restrict our study of the max-sup coherence to the critical intervals \([g_k,g_1]\) of \(E\) with \(k\in ]0,1[\), i.e., \(E\cap {{\mathrm{\uparrow }}}(g_k)\cap {{\mathrm{\downarrow }}}(g_1)\). We have \(\max (E\cap {{\mathrm{\uparrow }}}(g_k)\cap {{\mathrm{\downarrow }}}(g_1))=\left\{ f_{\ell }\right\} _{{\ell }\in [k,1[}\) which is not empty and we have \(g_1=\bigvee \max (E\cap {{\mathrm{\uparrow }}}(g_k)\cap {{\mathrm{\downarrow }}}(g_1))\). Therefore, \(E\) is max-sup coherent and max-sup coherence is not equivalent to chain-sup completness.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perret, B. Inf-structuring Functions: A Unifying Theory of Connections and Connected Operators. J Math Imaging Vis 51, 171–194 (2015). https://doi.org/10.1007/s10851-014-0515-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-014-0515-2

Keywords

Navigation