, Volume 46, Issue 3, pp 370-387,
Open Access This content is freely available online to anyone, anywhere at any time.
Date: 18 Jul 2012

Statistical Multiresolution Estimation for Variational Imaging: With an Application in Poisson-Biophotonics

Abstract

In this paper we present a spatially-adaptive method for image reconstruction that is based on the concept of statistical multiresolution estimation as introduced in Frick et al. (Electron. J. Stat. 6:231–268, 2012). It constitutes a variational regularization technique that uses an -type distance measure as data-fidelity combined with a convex cost functional. The resulting convex optimization problem is approached by a combination of an inexact alternating direction method of multipliers and Dykstra’s projection algorithm. We describe a novel method for balancing data-fit and regularity that is fully automatic and allows for a sound statistical interpretation. The performance of our estimation approach is studied for various problems in imaging. Among others, this includes deconvolution problems that arise in Poisson nanoscale fluorescence microscopy.