Journal of Mathematical Imaging and Vision

, Volume 43, Issue 2, pp 103–120

Non-local Methods with Shape-Adaptive Patches (NLM-SAP)

  • Charles-Alban Deledalle
  • Vincent Duval
  • Joseph Salmon
Article

DOI: 10.1007/s10851-011-0294-y

Cite this article as:
Deledalle, CA., Duval, V. & Salmon, J. J Math Imaging Vis (2012) 43: 103. doi:10.1007/s10851-011-0294-y

Abstract

We propose in this paper an extension of the Non-Local Means (NL-Means) denoising algorithm. The idea is to replace the usual square patches used to compare pixel neighborhoods with various shapes that can take advantage of the local geometry of the image. We provide a fast algorithm to compute the NL-Means with arbitrary shapes thanks to the Fast Fourier Transform. We then consider local combinations of the estimators associated with various shapes by using Stein’s Unbiased Risk Estimate (SURE). Experimental results show that this algorithm improve the standard NL-Means performance and is close to state-of-the-art methods, both in terms of visual quality and numerical results. Moreover, common visual artifacts usually observed by denoising with NL-Means are reduced or suppressed thanks to our approach.

Keywords

Image denoising Non-local means Spatial adaptivity Aggregation Risk estimation SURE 

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Charles-Alban Deledalle
    • 1
  • Vincent Duval
    • 1
  • Joseph Salmon
    • 2
  1. 1.Institut TelecomTelecom ParisTech, CNRS LTCIParis cedex 13France
  2. 2.Laboratoire de Probabilité et Modèles Aléatoires, CNRS-UMR 7599Université Paris 7–DiderotParisFrance

Personalised recommendations